Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Advantages)
(Surface Runoff on Ranges)
 
(342 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Photoactivated Reductive Defluorination PFAS Destruction==  
+
==Remediation of Stormwater Runoff Contaminated by Munition Constituents==  
Photoactivated Reductive Defluorination (PRD) is a [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] destruction technology predicated on [[Wikipedia: Ultraviolet | ultraviolet (UV)]] light-activated photochemical reactions. The destruction efficiency of this process is enhanced by the use of a [[Wikipedia: Surfactant | surfactant]] to confine PFAS molecules in self-assembled [[Wikipedia: Micelle | micelles]]. The photochemical reaction produces [[Wikipedia: Solvated electron | hydrated electrons]] from an electron donor that associates with the micelle. The hydrated electrons have sufficient energy to rapidly cleave fluorine-carbon and other molecular bonds of PFAS molecules due to the association of the electron donor with the micelle. Micelle-accelerated PRD is a highly efficient method to destroy PFAS in a wide variety of water matrices.
+
Past and ongoing military operations have resulted in contamination of surface soil with [[Munitions Constituents | munition constituents (MC)]], which have human and environmental health impacts. These compounds can be transported off site via stormwater runoff during precipitation events.  Technologies to “trap and treat” surface runoff before it enters downstream receiving bodies (e.g., streams, rivers, ponds) (see Figure 1), and which are compatible with ongoing range activities are needed. This article describes a passive and sustainable approach for effective management of munition constituents in stormwater runoff.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
 
*[[PFAS Sources]]
 
*[[PFAS Transport and Fate]]
 
*[[PFAS Ex Situ Water Treatment]]
 
*[[Supercritical Water Oxidation (SCWO)]]
 
*[[PFAS Treatment by Electrical Discharge Plasma]]
 
  
'''Contributor(s):'''
+
*[[Munitions Constituents]]
*Dr. Suzanne Witt
 
*Dr. Meng Wang
 
*Dr. Denise Kay
 
  
'''Key Resource(s):'''
 
*Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement<ref name="ChenEtAl2020">Chen, Z., Li, C., Gao, J., Dong, H., Chen, Y., Wu, B., Gu, C., 2020. Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement. Environmental Science and Technology, 54(8), pp. 5178–5185. [https://doi.org/10.1021/acs.est.9b06599 doi: 10.1021/acs.est.9b06599]</ref>
 
*Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-Acetic-Acid in Organomodified Montmorillonite<ref name="TianEtAl2016">Tian, H., Gao, J., Li, H., Boyd, S.A., Gu, C., 2016. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-Acetic-Acid in Organomodified Montmorillonite. Scientific Reports, 6(1), Article 32949. [https://doi.org/10.1038/srep32949 doi: 10.1038/srep32949]&nbsp;&nbsp; [[Media: TianEtAl2016.pdf | Open Access Article]]</ref>
 
*Application of Surfactant Modified Montmorillonite with Different Conformation for Photo-Treatment of Perfluorooctanoic Acid by Hydrated Electrons<ref name="ChenEtAl2019">Chen, Z., Tian, H., Li, H., Li, J. S., Hong, R., Sheng, F., Wang, C., Gu, C., 2019.  Application of Surfactant Modified Montmorillonite with Different Conformation for Photo-Treatment of Perfluorooctanoic Acid by Hydrated Electrons. Chemosphere, 235, pp. 1180–1188. [https://doi.org/10.1016/j.chemosphere.2019.07.032 doi: 10.1016/j.chemosphere.2019.07.032]</ref>
 
*[https://serdp-estcp.mil/projects/details/c4e21fa2-c7e2-4699-83a9-3427dd484a1a ER21-7569: Photoactivated Reductive Defluorination PFAS Destruction]<ref name="WittEtAl2023">Kay, D., Witt, S., Wang, M., 2023. Photoactivated Reductive Defluorination PFAS Destruction: Final Report. ESTCP Project ER21-7569. [https://serdp-estcp.mil/projects/details/c4e21fa2-c7e2-4699-83a9-3427dd484a1a Project Website]&nbsp;&nbsp; [[Media: ER21-7569_Final_Report.pdf | Final Report.pdf]]</ref>
 
  
==Introduction==
+
'''Contributor:''' Mark E. Fuller
[[File:WittFig1.png | thumb |400px|Figure 1. Schematic of PRD mechanism<ref name="WittEtAl2023"/>]]
 
The Photoactivated Reductive Defluorination (PRD) process is based on a patented chemical reaction that breaks fluorine-carbon bonds and disassembles PFAS molecules in a linear fashion beginning with the [[Wikipedia: Hydrophile | hydrophilic]] functional groups and proceeding through shorter molecules to complete mineralization. Figure 1 shows how PRD is facilitated by adding [[Wikipedia: Cetrimonium bromide | cetyltrimethylammonium bromide (CTAB)]] to form a surfactant micelle cage that traps PFAS. A non-toxic proprietary chemical is added to solution to associate with the micelle surface and produce hydrated electrons via stimulation with UV light. These highly reactive hydrated electrons have the energy required to cleave fluorine-carbon and other molecular bonds resulting in the final products of fluoride, water, and simple carbon molecules (e.g., formic acid and acetic acid). The methods, mechanisms, theory, and reactions described herein have been published in peer reviewed literature<ref name="ChenEtAl2020"/><ref name="TianEtAl2016"/><ref name="ChenEtAl2019"/><ref name="WittEtAl2023"/>.
 
  
==Advantages and Disadvantages==
+
'''Key Resource(s):'''
 +
*SERDP Project ER19-1106: Development of Innovative Passive and Sustainable Treatment Technologies for Energetic Compounds in Surface Runoff on Active Ranges
  
===Advantages===
+
==Background==
In comparison to other reported PFAS destruction techniques, PRD offers several advantages:  
+
===Surface Runoff Characteristics and Treatment Approaches===
*Relative to UV/sodium sulfite and UV/sodium iodide systems, the fitted degradation rates in the micelle-accelerated PRD reaction system were ~18 and ~36 times higher, indicating the key role of the self-assembled micelle in creating a confined space for rapid PFAS destruction<ref name="ChenEtAl2020"/>. The negatively charged hydrated electron associated with the positively charged cetyltrimethylammonium ion (CTA<sup>+</sup>) forms the surfactant micelle to trap molecules with similar structures, selectively mineralizing compounds with both hydrophobic and hydrophilic groups (e.g., PFAS).
+
[[File: FullerFig1.png | thumb | 300 px | Figure 1. Conceptual model of passive trap and treat approach for MC removal from stormwater runoff]]
*The PRD reaction does not require solid catalysts or electrodes, which can be expensive to acquire and difficult to regenerate or dispose.  
+
During large precipitation events the rate of water deposition exceeds the rate of water infiltration, resulting in surface runoff (also called stormwater runoff). Surface characteristics including soil texture, presence of impermeable surfaces (natural and artificial), slope, and density and type of vegetation all influence the amount of surface runoff from a given land area. The use of passive systems such as retention ponds and biofiltration cells for treatment of surface runoff is well established for urban and roadway runoff. Treatment in those cases is typically achieved by directing runoff into and through a small constructed wetland, often at the outlet of a retention basin, or via filtration by directing runoff through a more highly engineered channel or vault containing the treatment materials. Filtration based technologies have proven to be effective for the removal of metals, organics, and suspended solids<ref>Sansalone, J.J., 1999. In-situ performance of a passive treatment system for metal source control. Water Science and Technology, 39(2), pp. 193-200. [https://doi.org/10.1016/S0273-1223(99)00023-2 doi: 10.1016/S0273-1223(99)00023-2]</ref><ref>Deletic, A., Fletcher, T.D., 2006. Performance of grass filters used for stormwater treatment—A field and modelling study. Journal of Hydrology, 317(3-4), pp. 261-275. [http://dx.doi.org/10.1016/j.jhydrol.2005.05.021 doi: 10.1016/j.jhydrol.2005.05.021]</ref><ref>Grebel, J.E., Charbonnet, J.A., Sedlak, D.L., 2016. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Research, 88, pp. 481-491. [http://dx.doi.org/10.1016/j.watres.2015.10.019 doi: 10.1016/j.watres.2015.10.019]</ref><ref>Seelsaen, N., McLaughlan, R., Moore, S., Ball, J.E., Stuetz, R.M., 2006. Pollutant removal efficiency of alternative filtration media in stormwater treatment. Water Science and Technology, 54(6-7), pp. 299-305. [https://doi.org/10.2166/wst.2006.617 doi: 10.2166/wst.2006.617]</ref>.
*The aqueous solution is not heated or pressurized, and the UV wavelength used does not cause direct water [[Wikipedia: Photodissociation | photolysis]], therefore the energy input to the system is more directly employed to destroy PFAS, resulting in greater energy efficiency.
 
*Since the reaction is performed at ambient temperature and pressure, there are limited concerns regarding environmental health and safety or volatilization of PFAS compared to heated and pressurized systems.  
 
*Due to the reductive nature of the reaction, there is no formation of unwanted byproducts resulting from oxidative processes, such as [[Wikipedia: Perchlorate | perchlorate]]  generation during electrochemical oxidation<ref>Veciana, M., Bräunig, J., Farhat, A., Pype, M. L., Freguia, S., Carvalho, G., Keller, J., Ledezma, P., 2022. Electrochemical Oxidation Processes for PFAS Removal from Contaminated Water and Wastewater: Fundamentals, Gaps and Opportunities towards Practical Implementation. Journal of Hazardous Materials, 434, Article 128886. [https://doi.org/10.1016/j.jhazmat.2022.128886 doi: 10.1016/j.jhazmat.2022.128886]</ref><ref>Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., Kulisa, K., 2018. Advanced Oxidation/Reduction Processes Treatment for Aqueous Perfluorooctanoate (PFOA) and Perfluorooctanesulfonate (PFOS) – A Review of Recent Advances. Chemical Engineering Journal, 336, pp. 170–199. [https://doi.org/10.1016/j.cej.2017.10.153 doi: 10.1016/j.cej.2017.10.153]</ref><ref>Wanninayake, D.M., 2021. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. Journal of Environmental Management, 283, Article 111977. [https://doi.org/10.1016/j.jenvman.2021.111977 doi: 10.1016/j.jenvman.2021.111977]</ref>.
 
*Aqueous fluoride ions are the primary end products of PRD, enabling real-time reaction monitoring with a fluoride [[Wikipedia: Ion-selective electrode | ion selective electrode (ISE)]], which is far less expensive and faster than relying on PFAS analytical data alone to monitor system performance.
 
  
===Disadvantages===
+
===Surface Runoff on Ranges===
*The CTAB additive is only partially consumed during the reaction, and although CTAB is not problematic when discharged to downstream treatment processes that incorporate aerobic digestors, CTAB can be toxic to surface waters and anaerobic digestors. Therefore, disposal options for treated solutions will need to be evaluated on a site-specific basis. Possible options include removal of CTAB from solution for reuse in subsequent PRD treatments, or implementation of an oxidation reaction to degrade CTAB.  
+
Surface runoff represents a major potential mechanism through which energetics residues and related materials are transported off site from range soils to groundwater and surface water receptors (Figure 2). This process is particularly important for energetics that are water soluble (e.g., [[Wikipedia: Nitrotriazolone | NTO]] and [[Wikipedia: Nitroguanidine | NQ]]) or generate soluble daughter products (e.g., [[Wikipedia: 2,4-Dinitroanisole | DNAN]] and [[Wikipedia: TNT | TNT]]). While traditional MC such as [[Wikipedia: RDX | RDX]] and [[Wikipedia: HMX | HMX]] have limited aqueous solubility, they also exhibit recalcitrance to degrade under most natural conditions. RDX and [[Wikipedia: Perchlorate | perchlorate]] are frequent groundwater contaminants on military training ranges. While actual field measurements of energetics in surface runoff are limited, laboratory experiments have been performed to predict mobile energetics contamination levels based on soil mass loadings<ref>Cubello, F., Polyakov, V., Meding, S.M., Kadoya, W., Beal, S., Dontsova, K., 2024. Movement of TNT and RDX from composition B detonation residues in solution and sediment during runoff. Chemosphere, 350, Article 141023. [https://doi.org/10.1016/j.chemosphere.2023.141023 doi: 10.1016/j.chemosphere.2023.141023]</ref><ref>Karls, B., Meding, S.M., Li, L., Polyakov, V., Kadoya, W., Beal, S., Dontsova, K., 2023. A laboratory rill study of IMX-104 transport in overland flow. Chemosphere, 310, Article 136866. [https://doi.org/10.1016/j.chemosphere.2022.136866 doi: 10.1016/j.chemosphere.2022.136866]&nbsp; [[Media: KarlsEtAl2023.pdf | Open Access Article]]</ref>.
*The PRD reaction rate decreases in water matrices with high levels of total dissolved solids (TDS). It is hypothesized that in high TDS solutions (e.g., ion exchange still bottoms with TDS of 200,000 ppm), the presence of ionic species inhibits the association of the electron donor with the micelle, thus decreasing the reaction rate.
 
*The PRD reaction rate decreases in water matrices with very low UV transmissivity. Low UV transmissivity (i.e., < 1 %) prevents the penetration of UV light into the solution, such that the utilization efficiency of UV light decreases.  
 
  
 +
==Toxicological Effects of PFAS==
 +
The characterization of toxicological effects in human health risk assessments is based on toxicological studies of mammalian exposures to per- and polyfluoroalkyl substances (PFAS), primarily studies involving [[Wikipedia:Perfluorooctanesulfonic acid | perfluorooctanesulfonic acid (PFOS)]] and [[Wikipedia:Perfluorooctanoic acid|perfluorooctanoic acid (PFOA)]]. The most sensitive noncancer adverse effects involve the liver and kidney, immune system, and various developmental and reproductive endpoints<ref name="USEPA2024b">United States Environmental Protection Agency (USEPA), 2024. Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation. [https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas Website]</ref>. A select number of PFAS have been evaluated for carcinogenicity, primarily using epidemiological data. Only PFOS and PFOA (and their derivatives) have sufficient data for USEPA to characterize as ''Likely to Be Carcinogenic to Humans'' via the oral route of exposure. Epidemiological studies provided evidence of bladder, prostate, liver, kidney, and breast cancers in humans related to PFOS exposure, as well as kidney and testicular cancer in humans and limited evidence of breast cancer related to PFOA exposure<ref name="USEPA2024b"/><ref name="USEPA2016a">United States Environmental Protection Agency (USEPA), 2016. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA 822-R-16-004. [https://www.epa.gov/sites/production/files/2016-05/documents/pfos_health_advisory_final-plain.pdf  Free Download]&nbsp; [[Media: USEPA-2016-pfos_health_advisory_final-plain.pdf | Report.pdf]]</ref><ref name="USEPA2016b">United States Environmental Protection Agency (USEPA), 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water, EPA 822-R-16-005. [https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final_508.pdf Free Download]&nbsp; [[Media: pfoa_EPA 822-R-16-005.pdf | Report.pdf]]</ref>.
 +
 
 +
USEPA’s Integrated Risk Management System (IRIS) Program is developing Toxicological Reviews to improve understanding of the toxicity of several additional PFAS (i.e., not solely PFOA and PFOS). Toxicological Reviews provide an overview of cancer and noncancer health effects based on current literature and, where data are sufficient, derive human health toxicity criteria (i.e., human health oral reference doses and cancer slope factors) that form the basis for risk-based decision making. For risk assessors, these documents provide USEPA reference doses and cancer slope factors that can be used with exposure information and other considerations to assess human health risk. Final Toxicological Reviews have been completed for the following PFAS:
 +
*Perfluorooctanesulfonic acid (PFOS)
 +
*Perfluorooctanoic acid (PFOA)
 +
*Perfluorobutanoic acid (PFBA)
 +
*Perfluorohexanoic acid (PFHxA)
 +
*Perfluorobutane sulfonic acid (PFBS)
 +
*Perfluoropropionic acid (PFPrA)
 +
*Perfluorohexane sulfonic acid (PFHxS)
 +
*Lithium bis[(trifluoromethyl)sulfonyl]azanide (HQ-115)
 +
*Hexafluoropropylene oxide dimer acid (HFPO DA) and its Ammonium Salt
  
 +
Toxicity assessments are ongoing for the following PFAS:
 +
*Perfluorononanoic acid (PFNA)
 +
*Perfluorodecanoic acid (PFDA)
  
 +
It is important to note human health toxicity criteria for inhalation of PFAS are not included in the Final Toxicological Reviews and are not currently available.
 +
In addition to IRIS, state agencies have developed peer-reviewed provisional toxicity values that have been incorporated into USEPA’s RSLs, which are updated biannually. These values have not been reviewed by or incorporated into IRIS.
  
 +
With respect to ecological toxicity, effects on reproduction, growth, and development of avian and mammalian wildlife have been documented in controlled laboratory studies of exposures of standard toxicological test species (e.g., mice, quail) to PFAS. Many of these studies have been reviewed<ref name="ConderEtAl2020"> Conder, J., Arblaster, J., Larson, E., Brown, J., Higgins, C., 2020. Guidance for Assessing the Ecological Risks of PFAS to Threatened and Endangered Species at Aqueous Film Forming Foam-Impacted Sites. Strategic Environmental Research and Development Program (SERDP) Project ER 18-1614. [https://serdp-estcp.mil/projects/details/3f890c9b-7f72-4303-8d2e-52a89613b5f6 Project Website]&nbsp; [[Media: ER18-1614_Guidance.pdf | Guidance Document]]</ref><ref name="GobasEtAl2020">Gobas, F.A.P.C., Kelly, B.C., Kim, J.J., 2020. Final Report: A Framework for Assessing Bioaccumulation and Exposure Risks of PFAS in Threatened and Endangered Species on AFFF-Impacted Sites. SERDP Project ER18-1502. [https://serdp-estcp.mil/projects/details/09c93894-bc73-404a-8282-51196c4be163 Project Website]&nbsp; [[Media: ER18-1502_Final.pdf | Final Report]]</ref><ref name="Suski2020">Suski, J.G., 2020. Investigating Potential Risk to Threatened and Endangered Species from Per- and Polyfluoroalkyl Substances (PFAS) on Department of Defense (DoD) Sites. SERDP Project ER18-1626. [https://serdp-estcp.mil/projects/details/c328f8e3-95a4-4820-a0d4-ef5835134636 Project Website]&nbsp; [[Media: ER18-1626_Final.pdf | Report.pdf]]</ref><ref name="ZodrowEtAl2021a">Zodrow, J.M., Frenchmeyer, M., Dally, K., Osborn, E., Anderson, P. and Divine, C., 2021. Development of Per and Polyfluoroalkyl Substances Ecological Risk-Based Screening Levels. Environmental Toxicology and Chemistry, 40(3), pp. 921-936. [https://doi.org/10.1002/etc.4975 doi: 10.1002/etc.4975]&nbsp;&nbsp; [[Media: ZodrowEtAl2021a.pdf | Open Access Article]]</ref> to derive ecological Toxicity Reference Values (TRVs). TRVs can be used alongside exposure information and other considerations to assess ecological risk. Avian and mammalian wildlife receptors are generally expected to have the highest risks due to PFAS exposure. Direct toxicity to aquatic life, such as fish and invertebrates, from exposure to sediment and surface water also occurs, though concentrations in water associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are less sensitive to PFAS when compared to terrestrial wildlife, with risk-based PFAS concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife<ref name="ZodrowEtAl2021a"/>.
  
The self-assembly of [[Wikipedia: Amphiphile | amphiphilic]] molecules into supramolecular bilayers is a result of their structure and how it interacts with the bulk water of a solution. Single chain hydrocarbon based amphiphiles can form [[Wikipedia: Micelle | micelles]] under relatively dilute aqueous concentrations, however for hydrocarbon based surfactants the formation of more complex organized system such as [[Wikipedia: Vesicle (biology and chemistry) | vesicles]] is rarely seen, requiring double chain amphiphiles such as [[wikipedia: Phospholipid|phospholipids]]. Associations of single chain [[wikipedia: Ion#Anions_and_cations|cationic and anionic]] hydrocarbon based amphiphiles into stable supramolecular structures such as vesicles has however been demonstrated<ref>Fukuda, H., Kawata, K., Okuda, H., 1990. Bilayer-Forming Ion-Pair Amphiphiles from Single-Chain Surfactants. Journal of the American Chemical Society, 112(4), pp. 1635-1637. [https://doi.org/10.1021/ja00160a057 doi: 10.1021/ja00160a057]</ref>, with the ion pairing of the polar head groups mimicking the a double tail situation. The behavior of single chain [[wikipedia: Per-_and_polyfluoroalkyl_substances#Fluorosurfactants|fluorosurfactant]] amphiphiles has been demonstrated to be significantly different from similar hydrocarbon based analogues. Not only are [[Wikipedia: Critical micelle concentration | critical micelle concentrations (CMC)]] of fluorosurfactants typically two orders of magnitude lower than corresponding hydrocarbon surfactants but self-assembly can occur even when fluorosurfactants are dispersed at low concentrations significantly below the CMC in water and other solvents<ref name="Krafft2006">Krafft, M.P., 2006. Highly fluorinated compounds induce phase separation in, and nanostructuration of liquid media. Possible impact on, and use in chemical reactivity control. Journal of Polymer Science Part A: Polymer Chemistry, 44(14), pp. 4251-4258. [https://doi.org/10.1002/pola.21508 doi: 10.1002/pola.21508]&nbsp;&nbsp;[[Media:Krafft2006.pdf | Open Access Article]]</ref>. The assembly of fluorinated amphiphiles structurally similar to those found in AFFF have been shown to readily form stable, complex structures including vesicles, fibers, and globules at concentrations as low as 0.5% w/v in contrast to their hydrocarbon analogues which remained fluid at 30% w/v<ref>Krafft, M.P., Guilieri, F., Riess, J.G., 1993. Can Single-Chain Perfluoroalkylated Amphiphiles Alone form Vesicles and Other Organized Supramolecular Systems? Angewandte Chemie International Edition in English, 32(5), pp. 741-743. [https://doi.org/10.1002/anie.199307411 doi: 10.1002/anie.199307411]</ref><ref name="KrafftEtAl_1994">Krafft, M.P., Guilieri, F., Riess, J.G., 1994. Supramolecular assemblies from single chain perfluoroalkylated phosphorylated amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 84(1), pp. 113-119. [https://doi.org/10.1016/0927-7757(93)02681-4 doi: 10.1016/0927-7757(93)02681-4]</ref>.
+
==PFAS Screening Levels for Human Health and Ecological Risk Assessments==
 +
===Human Health Screening Levels===
 +
Human health screening levels for PFAS have been modified multiple times over the last decade and, in the United States, are currently available for drinking water and soil exposures as Maximum Contaminant Levels (MCLs) and USEPA Regional Screening Levels (RSLs). USEPA finalized a National Primary Drinking Water Regulation (NPDWR) for six PFAS<ref name="USEPA2024b"/>:
 +
*Perfluorooctanoic acid (PFOA)
 +
*Perfluorooctane sulfonic acid (PFOS)
 +
*Perfluorohexane sulfonic acid (PFHxS)
 +
*Perfluorononanoic acid (PFNA)
 +
*Hexafluoropropylene oxide dimer acid (HFPO-DA, commonly known as GenX chemicals)
 +
*Perfluorobutane sulfonic acid (PFBS)
  
Krafft found that fluorinated amphiphiles formed bilayer membranes with phospholipids, and that the resulting vesicles were more stable than those made of phospholipids alone<ref name="KrafftEtAl_1998">Krafft, M.P., Riess, J.G., 1998. Highly Fluorinated Amphiphiles and Collodial Systems, and their Applications in the Biomedical Field. A Contribution. Biochimie, 80(5-6), pp. 489-514. [https://doi.org/10.1016/S0300-9084(00)80016-4 doi: 10.1016/S0300-9084(00)80016-4]</ref>. The similarities in amphiphilic properties between phospholipids and the hydrocarbon-based surfactants in AFFF suggests that bilayer vesicles may form between these and the fluorosurfactants also present in the concentrate. Krafft demonstrated that both the permeability of resulting mixed vesicles and their propensity to fuse with each other at increasing ionic strength was reduced as a result of the creation of an inert hydrophobic and [[wikipedia: Lipophobicity|lipophobic]] film within the membrane, and also suggested that the fluorinated amphiphiles increased [[Wikipedia: van der Waals force | van der Waals interactions]] in the hydrocarbon region<ref name="KrafftEtAl_1998"/>. Thus this low permeability may allow vesicles formed by the surfactants present in AFFF to act as long term repositories of PFAS not only as part of the bilayer itself but also solvated within the vesicle. This prediction is supported by the observation that supramolecular structures formed from single chain fluorinated amphiphiles have been demonstrated to be stable at elevated temperature (15 min at 121&deg;C) and have been shown to be stable over periods of months, even increasing in size over time when stored at environmentally relevant temperatures<ref name="KrafftEtAl_1994"/>.
+
MCLs are enforceable drinking water standards based on the most recently available toxicity information that consider available treatment technologies and costs. The MCLs for PFAS include a Hazard Index of 1 for combined exposures to four PFAS. RSLs are developed for use in risk assessments and include soil and tap water screening levels for multiple PFAS. Soil RSLs are based on residential/unrestricted and commercial/industrial land uses, and calculations of site-specific RSLs are available.
  
Formation of complex structures at relatively low solute concentrations requires the monomer molecules to be well ordered to maintain tight packing in the supramolecular structure<ref>Ringsdorf, H., Schlarb, B., Venzmer, J., 1988. Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes. Angewandte Chemie International Edition in English, 27(1), pp. 113-158. [https://doi.org/10.1002/anie.198801131 doi: 10.1002/anie.198801131]</ref>. This order results from electrostatic forces, [[wikipedia: Hydrogen bond|hydrogen bonding]], and in the case of fluorinated amphiphiles, hydrophobic interactions. The geometry of the amphiphile also potentially contributes to the type of supramolecular aggregation<ref>Israelachvili, J.N., Mitchell, D.J., Ninham, B.W., 1976. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, pp. 1525-1568. [https://doi.org/10.1039/F29767201525 doi: 10.1039/F29767201525]</ref>. Surfactants which adopt a conical shape (such as a typical hydrocarbon based surfactant with a large polar head group and a single alkyl chain as a tail) tend to form micelles more easily. Increasing the bulk of the tail makes the surfactant more cylindrically shaped which makes assembly into bilayers more likely.  
+
Internationally, Canada and the European Union have also promulgated drinking water standards for select PFAS. However, large discrepancies exist among the various regulatory organizations, largely due to the different effect endpoints and exposure doses being used to calculate risk-based levels. The PFAS guidance from the Interstate Technology and Regulatory Council (ITRC) in the US includes a regularly updated compilation of screening values for PFAS and is available on their PFAS website<ref name="ITRC2023">Interstate Technology and Regulatory Council (ITRC) 2023. PFAS Technical and Regulatory Guidance Document. [https://pfas-1.itrcweb.org/ ITRC PFAS Website]</ref>: https://pfas-1.itrcweb.org.
  
Perfluoroalkyl chains are significantly more bulky than their hydrocarbon based analogues both in cross sectional area (28-30 Å<sup>2</sup> versus 20 Å<sup>2</sup>, respectively) and mean volume (CF<sub>2</sub> and CF<sub>3</sub> estimated as 38 Å<sup>3</sup> and 92 Å<sup>3</sup> compared to 27 Å<sup>3</sup> and 54 Å<sup>3</sup> for CH<sub>2</sub> and CH<sub>3</sub>)<ref name="KrafftEtAl_1998"/><ref name="Krafft2006"/>. Structural studies on linear PFOS have shown that the molecule adopts an unusual helical structure<ref>Erkoç, Ş., Erkoç, F., 2001. Structural and electronic properties of PFOS and LiPFOS. Journal of Molecular Structure: THEOCHEM, 549(3), pp. 289-293. [https://doi.org/10.1016/S0166-1280(01)00553-X doi:10.1016/S0166-1280(01)00553-X]</ref><ref name="TorresEtAl2009">Torres, F.J., Ochoa-Herrera, V., Blowers, P., Sierra-Alvarez, R., 2009. Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 76(8), pp. 1143-1149. [https://doi.org/10.1016/j.chemosphere.2009.04.009 doi: 10.1016/j.chemosphere.2009.04.009]</ref> in aqueous and solvent phases to alleviate [[wikipedia: Steric_effects#Steric_hindrance|steric hindrance]]. This arrangement results from the carbon chain starting in the planar all anti [[wikipedia:Conformational isomerism|conformation]] and then successively twisting all the CC-CC dihedrals by 15&deg;-20&deg; in the same direction<ref>Abbandonato, G., Catalano, D., Marini, A., 2010. Aggregation of Perfluoroctanoate Salts Studied by <sup>19</sup>F NMR and DFT Calculations: Counterion Complexation, Poly(ethylene glycol) Addition, and Conformational Effects. Langmuir 26(22), pp. 16762-16770. [https://doi.org/10.1021/la102578k  doi: 10.1021/la102578k].</ref>. The conformation also minimizes the electrostatic repulsion between fluorine atoms bonded to the same side of the carbon backbone by maximizing the interatomic distances between them<ref name="TorresEtAl2009"/>.
+
===Ecological Screening Levels===
 +
Most peer-reviewed literature and regulatory-based environmental quality benchmarks have been developed using data for PFOS and PFOA; however, other select PFAAs have been evaluated for potential effects to aquatic receptors<ref name="ITRC2023"/><ref name="ZodrowEtAl2021a"/><ref name="ConderEtAl2020"/>. USEPA has developed water quality criteria for aquatic life<ref name="USEPA2022"> United States Environmental Protection Agency (USEPA), 2022. Fact Sheet: Draft 2022 Aquatic Life Ambient Water Quality Criteria for Perfluorooctanoic acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)). Office of Water, EPA 842-D-22-005. [[Media: USEPA2022.pdf | Fact Sheet]]</ref><ref name="USEPA2024c">United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctanoic Acid (PFOA). Office of Water, EPA-842-R-24-002. [[Media: USEPA2024c.pdf | Report.pdf]]</ref><ref name="USEPA2024d">United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA-842-R-24-003. [[Media: USEPA2024d.pdf | Report.pdf]]</ref> for PFOA and PFOS. Following extensive reviews of the peer-reviewed literature, Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/> used the USEPA Great Lakes Initiative methodology<ref>United States Environmental Protection Agency (USEPA), 2012. Water Quality Guidance for the Great Lakes System. Part 132. [https://www.govinfo.gov/app/details/CFR-2013-title40-vol23/CFR-2013-title40-vol23-part132 Government Website]&nbsp; [[Media: CFR-2013-title40-vol23-part132.pdf | Part132.pdf]]</ref> to calculate acute and chronic screening levels for aquatic life for 23 PFAS. The Argonne National Laboratory has also developed Ecological Screening Levels for multiple PFAS<ref name="GrippoEtAl2024">Grippo, M., Hayse, J., Hlohowskyj, I., Picel, K., 2024. Derivation of PFAS Ecological Screening Values - Update. Argonne National Laboratory Environmental Science Division. [[Media: GrippoEtAl2024.pdf | Report.pdf]]</ref>. In contrast to surface water aquatic life benchmarks, sediment benchmark values are limited. For terrestrial systems, screening levels for direct exposure of soil plants and invertebrates to PFAS in soils have been developed for multiple AFFF-related PFAS<ref name="ConderEtAl2020"/><ref name="ZodrowEtAl2021a"/>, and the Canadian Council of Ministers of Environment developed several draft thresholds protective of direct toxicity of PFOS in soil<ref>Canadian Council of Ministers of the Environment (CCME), 2021. Canadian Soil and Groundwater Quality Guidelines for the Protection of Environmental and Human Health, Perfluorooctane Sulfonate (PFOS). [[Media: CCME2018.pdf | Open Access Government Document]]</ref>.  
  
A consequence of the helical structure is that there is limited carbon-carbon bond rotation within the perfluoroalkyl chain giving them increased rigidity compared to alkyl chains<ref>Barton, S.W., Goudot, A., Bouloussa, O., Rondelez, F., Lin, B., Novak, F., Acero, A., Rice, S., 1992. Structural transitions in a monolayer of fluorinated amphiphile molecules. The Journal of Chemical Physics, 96(2), pp. 1343-1351. [https://doi.org/10.1063/1.462170 doi: 10.1063/1.462170]</ref>. The bulkiness of the perfluoroalkyl chain confers a cylindrical shape on the fluorosurfactant amphiphile and therefore favors the formation of bilayers and vesicles the aggregation of which is further assisted by the rigidity of the molecules which allow close packing in the supramolecular structure. Fluorosurfactants therefore cannot be regarded as more hydrophobic analogues of hydrogenated surfactants. Their self-assembly behavior is characterized by a strong tendency to form vesicles and lamellar phases rather than micelles, due to the bulkiness and rigidity of the perfluoroalkyl chain that tends to decrease the curvature of the aggregates they form in solution<ref>Barton, C.A., Butler, L.E., Zarzecki, C.J., Flaherty, J., Kaiser, M., 2006. Characterizing Perfluorooctanoate in Ambient Air near the Fence Line of a Manufacturing Facility: Comparing Modeled and Monitored Values. Journal of the Air and Waste Management Association, 56, pp. 48-55. [https://doi.org/10.1080/10473289.2006.10464429 doi: 10.1080/10473289.2006.10464429]&nbsp;&nbsp;[https://www.tandfonline.com/doi/epdf/10.1080/10473289.2006.10464429?needAccess=true Open Access Article]</ref>. The larger tail cross section of fluorinated compared to hydrogenated amphiphiles tends to favor the formation of aggregates with lesser surface curvature, therefore rather than micelles they form bilayer membranes, vesicles, tubules and fibers<ref>Krafft, M.P., Guilieri, F., Riess, J.G., 1993. Can Single-Chain Perfluoroalkylated Amphiphiles Alone form Vesicles and Other Organized Supramolecular Systems? Angewandte Chemie International Edition in English, 32(5), pp. 741-743. [https://doi.org/10.1002/anie.199307411 doi: 10.1002/anie.199307411]</ref><ref>Furuya, H., Moroi, Y., Kaibara, K., 1996. Solid and Solution Properties of Alkylammonium Perfluorocarboxylates. The Journal of Physical Chemistry, 100(43), pp. 17249-17254. [https://doi.org/10.1021/jp9612801 doi: 10.1021/jp9612801]</ref><ref>Giulieri, F., Krafft, M.P., 1996. Self-organization of single-chain fluorinated amphiphiles with fluorinated alcohols. Thin Solid Films, 284-285, pp. 195-199. [https://doi.org/10.1016/S0040-6090(95)08304-9 doi: 10.1016/S0040-6090(95)08304-9]</ref><ref>Gladysz, J.A., Curran, D.P., Horvath, I.T., 2004. Handbook of Fluorous Chemistry. WILEY-VCH Verlag GmbH & Co. KGaA,, Weinheim, Germany. ISBN: 3-527-30617-X</ref>. Rojas ''et al.'' (2002) demonstrated that perfluorooctyl sulphonamide formed a contiguous bilayer at 50 mg/L with self-assembled aggregates present at concentrations as low as 10 mg/L<ref name="RojasEtAl2002">Rojas, O.J., Macakova, L., Blomberg, E., Emmer, A., and Claesson, P.M., 2002. Fluorosurfactant Self-Assembly at Solid/Liquid Interfaces. Langmuir, 18(21), pp. 8085-8095. [https://doi.org/10.1021/la025989c doi: 10.1021/la025989c]</ref>.
+
Wildlife screening levels for abiotic media are back-calculated from food web models developed for representative receptors. Both Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/> and Grippo ''et al.''<ref name="GrippoEtAl2024"/> include the development of risk-based screening levels for wildlife. The Michigan Department of Community Health<ref>Dykema, L.D., 2015. Michigan Department of Community Health Final Report, USEPA Great Lakes Restoration Initiative (GLRI) Project, Measuring Perfluorinated Compounds in Michigan Surface Waters and Fish. Grant GL-00E01122. [https://www.michigan.gov/documents/mdch/MDCH_GL-00E01122-0_Final_Report_493494_7.pdf Free Download]&nbsp; [[Media: MDCH_Geart_Lakes_PFAS.pdf | Report.pdf]]</ref> derived a provisional PFOS surface water value for avian and mammalian wildlife. In California, the San Francisco Bay Regional Water Quality Control Board developed terrestrial habitat soil ecological screening levels based on values developed in Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/>. For PFOS only, a dietary screening level (i.e. applicable to the concentration of PFAS measured in dietary items) has been developed for mammals at 4.6 micrograms per kilogram (μg/kg) wet weight (ww), and for avians at 8.2 μg/kg ww<ref>Environment and Climate Change Canada, 2018. Federal Environmental Quality Guidelines, Perfluorooctane Sulfonate (PFOS). [[Media: ECCC2018.pdf | Repoprt.pdf]]</ref>.
  
==Thermodynamics of PFAS Accumulations on Solid Surfaces==
+
==Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Human Health==
The thermodynamics of formation of amphiphiles into supramolecular species requires consideration of both hydrophobic and hydrophilic interactions resulting from the amphoteric nature of the molecule. The hydrophilic portions of the molecule are driven to maximize their solvation interaction with as many water molecules as possible, whereas the hydrophobic portions of the molecule are driven to aggregate together thus minimizing interaction with the bulk water. Both of these processes change the [[wikipedia:Enthalpy|enthalpy]] and [[wikipedia: Entropy|entropy]] of the system.
+
Exposure pathways and effects for select PFAS are well understood, such that standard human health risk assessment approaches can be used to quantify risks for populations relevant to a site. Human health exposures via drinking water have been the focus in risk assessments and investigations at PFAS sites<ref>Post, G.B., Cohn, P.D., Cooper, K.R., 2012. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, pp. 93-117. [https://doi.org/10.1016/j.envres.2012.03.007 doi: 10.1016/j.envres.2012.03.007]</ref><ref>Guelfo, J.L., Marlow, T., Klein, D.M., Savitz, D.A., Frickel, S., Crimi, M., Suuberg, E.M., 2018. Evaluation and Management Strategies for Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted U.S. Northeast Communities. Environmental Health Perspectives,126(6), 13 pages. [https://doi.org/10.1289/EHP2727 doi: 10.1289/EHP2727]&nbsp; [[Media: GuelfoEtAl2018.pdf | Open Access Article]]</ref>. Risk assessment approaches for PFAS in drinking water follow typical, well-established drinking water risk assessment approaches for chemicals as detailed in regulatory guidance documents for various jurisdictions.  
  
<center><big>Anion Exchange Reaction:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''PFAS<sup>-</sup></big><sub>(aq)</sub><big>&nbsp;+&nbsp;Cl<sup>-</sup></big><sub>(resin bound)</sub><big>&nbsp;&nbsp;&rArr;&nbsp;&nbsp;PFAS<sup>-</sup></big><sub>(resin bound)</sub><big>&nbsp;+&nbsp;Cl<sup>-</sup></big><sub>(aq)</sub>'''</center>
+
Incidental exposures to soil and dusts for PFAS can occur during a variety of soil disturbance activities, such as gardening and digging, hand-to-mouth activities, and intrusive groundwork by industrial or construction workers. As detailed by the ITRC<ref name="ITRC2023"/>, many US states and USEPA have calculated risk-based screening levels for these soil and drinking water pathways (and many also include dermal exposures to soils) using well-established risk assessment guidance.
  
{| class="wikitable mw-collapsible" style="float:left; margin-right:20px; text-align:center;"
+
Field and laboratory studies have shown that some PFCAs and PFSAs bioaccumulate in fish and other aquatic life at rates that could result in relevant dietary PFAS exposures for consumers of fish and other seafood<ref>Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.189-195. [https://doi.org/10.1002/etc.5620220125 doi: 10.1002/etc.5620220125]</ref><ref>Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.196-204. [https://doi.org/10.1002/etc.5620220126 doi: 10.1002/etc.5620220126]</ref><ref>Chen, F., Gong, Z., Kelly, B.C., 2016. Bioavailability and bioconcentration potential of perfluoroalkyl-phosphinic and -phosphonic acids in zebrafish (Danio rerio): Comparison to perfluorocarboxylates and perfluorosulfonates. Science of The Total Environment, 568, pp. 33-41. [https://doi.org/10.1016/j.scitotenv.2016.05.215 doi: 10.1016/j.scitotenv.2016.05.215]</ref><ref>Fang, S., Zhang, Y., Zhao, S., Qiang, L., Chen, M., Zhu, L., 2016. Bioaccumulation of per fluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm. Environmental Toxicology and Chemistry, 35(12), pp. 3005-3013. [https://doi.org/10.1002/etc.3483 doi: 10.1002/etc.3483]</ref><ref>Bertin, D., Ferrari, B.J.D. Labadie, P., Sapin, A., Garric, J., Budzinski, H., Houde, M., Babut, M., 2014. Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment. Environmental Pollution, 189, pp. 27-34. [https://doi.org/10.1016/j.envpol.2014.02.018  doi: 10.1016/j.envpol.2014.02.018]</ref><ref>Bertin, D., Labadie, P., Ferrari, B.J.D., Sapin, A., Garric, J., Geffard, O., Budzinski, H., Babut. M., 2016. Potential exposure routes and accumulation kinetics for poly- and perfluorinated alkyl compounds for a freshwater amphipod: Gammarus spp. (Crustacea). Chemosphere, 155, pp. 380-387. [https://doi.org/10.1016/j.chemosphere.2016.04.006 doi: 10.1016/j.chemosphere.2016.04.006]</ref><ref>Dai, Z., Xia, X., Guo, J., Jiang, X., 2013. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna. Chemosphere, 90(5), pp.1589-1596. [https://doi.org/10.1016/j.chemosphere.2012.08.026 doi: 10.1016/j.chemosphere.2012.08.026]</ref><ref>Prosser, R.S., Mahon, K., Sibley, P.K., Poirier, D., Watson-Leung, T. 2016. Bioaccumulation of perfluorinated carboxylates and sulfonates and polychlorinated biphenyls in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from field-collected sediments. Science of The Total Environment, 543(A), pp. 715-726. [https://doi.org/10.1016/j.scitotenv.2015.11.062 doi: 10.1016/j.scitotenv.2015.11.062]</ref><ref>Rich, C.D., Blaine, A.C., Hundal, L., Higgins, C., 2015. Bioaccumulation of Perfluoroalkyl Acids by Earthworms (Eisenia fetida) Exposed to Contaminated Soils. Environmental Science and Technology, 49(2) pp. 881-888. [https://doi.org/10.1021/es504152d doi: 10.1021/es504152d]</ref><ref>Muller, C.E., De Silva, A.O., Small, J., Williamson, M., Wang, X., Morris, A., Katz, S., Gamberg, M., Muir, D.C.G., 2011. Biomagnification of Perfluorinated Compounds in a Remote Terrestrial Food Chain: Lichen–Caribou–Wolf. Environmental Science and Technology, 45(20), pp. 8665-8673. [https://doi.org/10.1021/es201353v doi: 10.1021/es201353v]</ref>. In addition to fish, terrestrial wildlife can accumulate contaminants from impacted sites, resulting in potential exposures to consumers of wild game<ref name="ConderEtAl2021"/>. Additionally, exposures can occur though consumption of homegrown produce or agricultural products that originate from areas irrigated with PFAS-impacted groundwater, or that are amended with biosolids that contain PFAS, or that contain soils that were directly affected by PFAS releases<ref>Brown, J.B, Conder, J.M., Arblaster, J.A., Higgins, C.P.,  2020. Assessing Human Health Risks from Per- and Polyfluoroalkyl Substance (PFAS)-Impacted Vegetable Consumption: A Tiered Modeling Approach. Environmental Science and Technology, 54(23), pp. 15202-15214. [https://doi.org/10.1021/acs.est.0c03411 doi: 10.1021/acs.est.0c03411]&nbsp; [[Media: BrownEtAl2020.pdf | Open Access Article]]</ref>. Multiple studies have found PFAS can be taken up by plants from soil porewater<ref>Blaine, A.C., Rich, C.D., Hundal, L.S., Lau, C., Mills, M.A., Harris, K.M., Higgins, C.P., 2013. Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environmental Science and Technology, 47(24), pp. 14062-14069. [https://doi.org/10.1021/es403094q doi: 10.1021/es403094q]&nbsp; [https://www.epa.gov/sites/production/files/2019-11/documents/508_pfascropuptake.pdf Free Download from epa.gov]</ref><ref>Blaine, A.C., Rich, C.D., Sedlacko, E.M., Hyland, K.C., Stushnoff, C., Dickenson, E.R.V., Higgins, C.P., 2014. Perfluoroalkyl Acid Uptake in Lettuce (Lactuca sativa) and Strawberry (Fragaria ananassa) Irrigated with Reclaimed Water. Environmental Science and Technology, 48(24), pp. 14361-14368. [https://doi.org/10.1021/es504150h doi: 10.1021/es504150h]</ref><ref>Ghisi, R., Vamerali, T., Manzetti, S., 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, pp. 326-341. [https://doi.org/10.1016/j.envres.2018.10.023 doi: 10.1016/j.envres.2018.10.023]</ref>, and livestock can accumulate PFAS from drinking water and/or feed<ref>van Asselt, E.D., Kowalczyk, J., van Eijkeren, J.C.H., Zeilmaker, M.J., Ehlers, S., Furst, P., Lahrssen-Wiederhold, M., van der Fels-Klerx, H.J., 2013. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk. Food Chemistry, 141(2), pp.1489-1495. [https://doi.org/10.1016/j.foodchem.2013.04.035 doi: 10.1016/j.foodchem.2013.04.035]</ref>. Thus, when PFAS are present in surface water bodies where fishing or shellfish harvesting occurs or terrestrial areas where produce is grown or game is hunted, the bioaccumulation of PFAS into dietary items can be an important pathway for human exposure.
|+Table 1. Percent decreases from initial PFAS concentrations during benchtop testing of PRD treatment in different water matrices
 
|-
 
! Analytes
 
!
 
! GW
 
! FF
 
! AFFF<br>Rinsate
 
! AFF<br>(diluted 10X)
 
! IDW NF
 
|-
 
| &Sigma; Total PFAS<small><sup>a</sup></small> (ND=0)
 
| rowspan="9" style="background-color:white;" | <p style="writing-mode: vertical-rl">% Decrease<br>(Initial Concentration, &mu;g/L)</p>
 
| 93%<br>(370) || 96%<br>(32,000) || 89%<br>(57,000) || 86 %<br>(770,000) || 84%<br>(82)
 
|-
 
| &Sigma; Total PFAS (ND=MDL) || 93%<br>(400) || 86%<br>(32,000) || 90%<br>(59,000) || 71%<br>(770,000) || 88%<br>(110)
 
|-  
 
| &Sigma; Total PFAS (ND=RL) || 94%<br>(460) || 96%<br>(32,000) || 91%<br>(66,000) || 34%<br>(770,000) || 92%<br>(170)
 
|-
 
| &Sigma; Highly Regulated PFAS<small><sup>b</sup></small> (ND=0) || >99%<br>(180) || >99%<br>(20,000) || 95%<br>(20,000) || 92%<br>(390,000) || 95%<br>(50)
 
|-
 
| &Sigma; Highly Regulated PFAS (ND=MDL) || >99%<br>(180) || 98%<br>(20,000) || 95%<br>(20,000) || 88%<br>(390,000) || 95%<br> (52)
 
|-
 
| &Sigma; Highly Regulated PFAS (ND=RL) || >99%<br>(190) || 93%<br>(20,000) || 95%<br>(20,000) || 79%<br>(390,000) || 95%<br>(55)
 
|-
 
| &Sigma; Priority PFAS<small><sup>c</sup></small> (ND=0) || 91%<br>(180) || 98%<br>(20,000) || 85%<br>(20,000) || 82%<br>(400,000) || 94%<br>(53)
 
|-
 
| &Sigma; Priority PFAS (ND=MDL) || 91%<br>(190) || 94%<br>(20,000) || 85%<br>(20,000) || 79%<br>(400,000) || 86%<br>(58)
 
|-
 
| &Sigma; Priority PFAS (ND=RL) || 92%<br>(200) || 87%<br>(20,000) || 86%<br>(21,000) || 70%<br>(400,000) || 87%<br>(65)
 
|-
 
| Fluorine mass balance<small><sup>d</sup></small> || ||106% || 109% || 110% || 65% || 98%
 
|-
 
| Sorbed organic fluorine<small><sup>e</sup></small> || || 4% || 4% || 33% || N/A || 31%
 
|-
 
| colspan="7" style="background-color:white; text-align:left" | <small>Notes:<br>GW = groundwater<br>GW FF = groundwater foam fractionate<br>AFFF rinsate = rinsate collected from fire system decontamination<br>AFFF (diluted 10x) = 3M Lightwater AFFF diluted 10x<br>IDW NF = investigation derived waste nanofiltrate<br>ND = non-detect<br>MDL = Method Detection Limit<br>RL = Reporting Limit<br><small><sup>a</sup></small>Total PFAS = 40 analytes + unidentified PFCA precursors<br><small><sup>b</sup></small>Highly regulated PFAS = PFNA, PFOA, PFOS, PFHxS, PFBS, HFPO-DA<br><small><sup>c</sup></small>High priority PFAS = PFNA, PFOA, PFHxA, PFBA, PFOS, PFHxS, PFBS, HFPO-DA<br><small><sup>d</sup></small>Ratio of the final to the initial organic fluorine plus inorganic fluoride concentrations<br><small><sup>e</sup></small>Percent of organic fluorine that sorbed to the reactor walls during treatment<br></small>
 
|}
 
  
 +
PFAAs such as PFOA and PFOS are not expected to volatilize from PFAS-impacted environmental media<ref name="USEPA2016a"/><ref name="USEPA2016b"/> such as soil and groundwater, which are the primary focus of most site-specific risk assessments. In contrast to non-volatile PFAAs, fluorotelomer alcohols (FTOHs) are among the more widely studied of the volatile PFAS. FTOHs are transient in the atmosphere with a lifetime of 20 days<ref>Ellis, D.A., Martin, J.W., De Silva, A.O., Mabury, S.A., Hurley, M.D., Sulbaek Andersen, M.P., Wallington, T.J., 2004. Degradation of Fluorotelomer Alcohols:  A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environmental Science and Technology, 38(12), pp. 3316-3321. [https://doi.org/10.1021/es049860w doi: 10.1021/es049860w]</ref>. At most AFFF sites under evaluation, AFFF releases have occurred many years before such that FTOH may no longer be present. As such, the current assumption is that volatile PFAS, such as FTOHs historically released at the site, will have transformed to stable, low-volatility PFAS, such as PFAAs in soil or groundwater, or will they have diffused to the outdoor atmosphere. There is no evidence that FTOHs or other volatile PFAS are persistent in groundwater or soils such that they present an indoor vapor intrusion pathway risk concern as observed for chlorinated solvents. Ongoing research continues for the vapor pathway<ref name="ITRC2023"/>.
  
In aqueous solution, the hydrophilic portions of an amphiphile form hydrogen bonds (4 - 120 kJ/mol) and van der Waals interactions (<5 kJ/mol) with water molecules and surfaces, and electrostatic interactions (5 – 300 kJ/mol) can also occur where the amphiphile is ionic<ref name="LombardoEtAl2015">Lombardo, D., Kiselev, M.A., Magazù, S., Calandra, P., 2015. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Advances in Condensed Matter Physics, vol. 2015, article ID 151683, 22 pages. [https://doi.org/10.1155/2015/151683 doi: 10.1155/2015/151683]&nbsp;&nbsp;[[Media: LombardoEtAl2015.pdf | Open Access Article]]</ref>. These interactions, although weak compared to intramolecular covalent bonds within a molecule are energetically favorable and increase the enthalpy of the combined solute-solvent system. Thus, the hydrophilic portion of an amphiphile will look to maximize enthalpic gain through hydrogen bond interactions with the bulk water.
+
General and site-specific human health exposure pathways and risk assessment methods as outlined by USEPA<ref>United States Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part A). Office of Solid Waste and Emergency Response, EPA/540/1-89/002. [https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=10001FQY.txt Free Download]&nbsp; [[Media: USEPA1989.pdf | Report.pdf]]</ref><ref name="USEPA1997">United States Environmental Protection Agency (USEPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Office of Solid Waste and Emergency Response, EPA 540-R-97-006. [http://semspub.epa.gov/src/document/HQ/157941 Free Download]&nbsp; [[Media: EPA540-R-97-006.pdf | Report.pdf]]</ref> can be applied to PFAS risk assessments for which human health toxicity values have been developed. Additionally, for risk assessments with dietary exposures of PFAS, standard risk assessment food web modeling can be used to develop initial estimates of dietary concentrations which can be confirmed with site-specific tissue sampling programs.
  
The hydrophobic portion of an amphiphile cannot form hydrogen bonds with the bulk solution, and its presence disrupts the hydrogen bond interactions between individual water molecules within the bulk water matrix. This disruption lowers the entropy of the system by reducing the degrees of translational rotational freedom available to the bulk water. The [[wikipedia:Second law of thermodynamics|second law of thermodynamics]] dictates that a system will arrange itself to maximize its entropy. With hydrophobic species this can be achieved by their spontaneous aggregation, as the reduction in solution entropy of the aggregated system is less than that which would occur if the component parts were solvated individually. These hydrophobic and hydrophilic interactions are weak, and the individual entropy gain per amphiphile upon aggregation is very small. However, taken together the overall effect on the entropy of the aggregate is sufficient to maintain it in solution, and moreover these interactions make the aggregates resistant to minor perturbations while retaining the reversibility of the self-assembled structure<ref name="LombardoEtAl2015"/>.
+
==Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Ecological==
 +
Information available currently on exposures and effects of PFAS in ecological receptors indicate that the PFAS ecological risk issues at most sites are primarily associated with risks to vertebrate wildlife.  Avian and mammalian wildlife are relatively sensitive to PFAS, and dietary intake via bioaccumulation in terrestrial and aquatic food webs can result in exposures that are dominated by the more accumulative PFAS<ref name="LarsonEtAl2018">Larson, E.S., Conder, J.M., Arblaster, J.A., 2018. Modeling avian exposures to perfluoroalkyl substances in aquatic habitats impacted by historical aqueous film forming foam releases. Chemosphere, 201, pp. 335-341. [https://doi.org/10.1016/j.chemosphere.2018.03.004 doi: 10.1016/j.chemosphere.2018.03.004]</ref><ref name="ConderEtAl2020"/><ref name="ZodrowEtAl2021a"/>. Direct toxicity to aquatic life (e.g., fish, pelagic life, benthic invertebrates, and aquatic plants) can occur from exposure to sediment and surface water at effected sites.  For larger areas, surface water concentrations associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are generally less sensitive, with risk-based concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife<ref name="ZodrowEtAl2021a"/>.
  
==Regulatory Drivers for Transition to PFAS-Free Firefighting Formulations==
+
Aquatic life are exposed to PFAS through direct exposure in surface water and sediment. Ecological risk assessment approaches for PFAS for aquatic life follow standard risk assessment approaches. The evaluation of potential risks for aquatic life with direct exposure to PFAS in environmental media relies on comparing concentrations in external exposure media to protective, media-specific benchmarks, including the aquatic life risk-based screening levels discussed above<ref name="ZodrowEtAl2021a"/><ref name="USEPA2024a">United States Environmental Protection Agency (USEPA), 2024. National Recommended Water Quality Criteria - Aquatic Life Criteria Table. [https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table USEPA Website]</ref>.
Regulations restricting the use and release of PFAS are being proposed and promulgated worldwide, with several enacted regulations addressing the use of aqueous film forming foams (AFFF) containing PFAS<ref name="Queensland2016">Queensland (Australia) Department of Environment and Heritage Protection, 2016. Operational Policy - Environmental Management of Firefighting Foam. 16 pages. [https://environment.des.qld.gov.au/assets/documents/regulation/firefighting-foam-policy.pdf Free Download]</ref><ref>U.S. Congress, 2019. S.1790 - National Defense Authorization Act for Fiscal Year 2020. United States Library of Congress.&nbsp;&nbsp;[https://www.congress.gov/bill/116th-congress/senate-bill/1790 Text and History of Law].</ref><ref>Arizona State Legislature, 2019. Title 36, Section 1696. Firefighting foam; prohibited uses; exception; definitions. [https://www.azleg.gov/viewdocument/?docName=https://www.azleg.gov/ars/36/01696.htm Text of Law]</ref><ref>California Legislature, 2020. Senate Bill No. 1044, Chapter 308, Firefighting equipment and foam: PFAS chemicals. [https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200SB1044 Text and History of Law]</ref><ref>Arkansas General Assembly, 2021. An Act Concerning the Use of Certain Chemicals in Firefighting Foam; and for Other Purposes. Act 315, State of Arkansas. [https://trackbill.com/bill/arkansas-house-bill-1351-concerning-the-use-of-certain-chemicals-in-firefighting-foam/2008913/ Text and History of Law].</ref><ref>Espinosa, Summers, Kelly, J., Statler, Hansen, Young, 2021. Amendment to Fire Prevention and Control Act. House Bill 2722. West Virginia Legislature. [https://trackbill.com/bill/west-virginia-house-bill-2722-prohibiting-the-use-of-class-b-fire-fighting-foam-for-testing-purposes-if-the-foam-contains-a-certain-class-of-fluorinated-organic-chemicals/2047674/ Text and History of Law]</ref><ref>Louisiana Legislature, 2021. Act No. 232. [https://trackbill.com/bill/louisiana-house-bill-389-fire-protect-fire-marshal-provides-relative-to-the-discharge-or-use-of-class-b-fire-fighting-foam-containing-fluorinated-organic-chemicals/2092535/  Text and History of Law]</ref><ref>Vermont Legislature, 2021b. Act No. 36, PFAS in Class B Firefighting Foam. [https://trackbill.com/bill/vermont-senate-bill-20-an-act-relating-to-restrictions-on-perfluoroalkyl-and-polyfluoroalkyl-substances-and-other-chemicals-of-concern-in-consumer-products/1978963/  History and Text of Law]</ref>. In addition to regulated usage, firefighting formulation users are transitioning to PFAS-free firefighting formulations to reduce environmental liability in the event of a release, to reduce the cost of expensive containment systems and management of generated waste streams, and to avoid reputational damage. In 2016, Queensland, Australia was one of the first governments to ban PFAS use in firefighting foam<ref name="Queensland2016"/>. The US 2020 National Defense Authorization Act specified immediate prohibition of controlled releases of AFFF containing PFAS and required the Secretary of the Navy to publish a specification for PFAS-free firefighting formulation use and ensure it is available for use by the Department of Defense (DoD) by October 1, 2023<ref>U.S. Congress, 2021. S.2792 - National Defense Authorization Act for Fiscal Year 2021. United States Library of Congress.&nbsp;&nbsp;[https://www.congress.gov/bill/117th-congress/senate-bill/2792/ Text and History of Law].</ref>. The National Fire Protection Association (NFPA) recently removed the requirement for AFFF containing PFAS from their Standard on Aircraft Hangars and added two new chapters to allow users to determine if AFFF containing PFAS is needed at their facility<ref name="NFPA2022">National Fire Protection Association (NFPA), 2022. Codes and Standards, 409: Standard on Aircraft Hangars. [https://www.nfpa.org/codes-and-standards/4/0/9/409?l=42 NFPA Website]</ref>.
 
  
==Selection of Replacement PFAS-Free Firefighting Formulations==       
+
When an area at the point of PFAS release is an industrial setting which does not feature favorable habitats for terrestrial and aquatic-dependent wildlife, the transport mechanisms may allow PFAS to travel offsite. If offsite or downgradient areas contain ecological habitat, then PFAS transported to these areas are expected to pose the highest risk potential to wildlife, particularly those areas that feature aquatic habitat<ref>Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33(9), pp. 1921-1929. [https://doi.org/10.1002/etc.2663 doi: 10.1002/etc.2663]&nbsp; [[Media: AhrensBundschuh2014.pdf | Open Access Article]]</ref><ref name="LarsonEtAl2018"/>.
Since they first entered the market in the 2000s, the operational capabilities of PFAS-free firefighting formulations have grown<ref>Allcorn, M., Bluteau, T., Corfield, J., Day, G., Cornelsen, M., Holmes, N.J.C., Klein, R.A., McDowall, J.G., Olsen, K.T., Ramsden, N., Ross, I., Schaefer, T.H., Weber, R., Whitehead, K., 2018. Fluorine-Free Firefighting Foams (3F) – Viable Alternatives to Fluorinated Aqueous Film-Forming Foams (AFFF). White Paper prepared for the IPEN by members of the IPEN F3 Panel and associates, POPRC-14, Rome. [https://ipen.org/sites/default/files/documents/IPEN_F3_Position_Paper_POPRC-14_12September2018d.pdf Free Download].</ref> and numerous companies are now manufacturing and delivering PFAS-free firefighting formulations for fixed systems and AFFF vehicles<ref>Ansul (Company), Ansul NFF-331 3%x3% Non-Fluorinated Foam Concentrate (Commercial Product). [https://docs.johnsoncontrols.com/specialhazards/api/khub/documents/1nbeVfynU1IW~eJcCOA0Bg/content Product Data Sheet].</ref><ref>BioEx (Company), Ecopol A+ (Commercial Product). [https://www.bio-ex.com/en/our-products/product/ecopol-aplus/  Website]</ref><ref>National Foam (Company), 2020. Avio F3 Green KHC 3%, Fluorine Free Foam Concentrate (Commercial Product). [https://nationalfoam.com/wp-content/uploads/sites/4/NMS515-Avio-Green-KHC-3-FF.pdf Safety Data Sheet]</ref>. Key factors in the selection of a PFAS-free firefighting formulation product are compatibility of the new formulation with the existing system (as confirmed by a fire protection engineer) and environmental certifications (i.e., verifying the absence of organic fluorine or PFAS or the absence of other non-fluorine environmental contaminants).
 
  
In January 2023, the US Department of Defense (DoD) published the [https://media.defense.gov/2023/Jan/12/2003144157/-1/-1/1/MILITARY-SPECIFICATION-FOR-FIRE-EXTINGUISHING-AGENT-FLUORINE-FREE-FOAM-F3-LIQUID-CONCENTRATE-FOR-LAND-BASED-FRESH-WATER-APPLICATIONS.PDF Performance Specification for Fire Extinguishing Agent, Fluorine-Free Foam (F3) Liquid Concentrate for Land-Based, Fresh Water Applications]<ref name="DoD2023"/>. This Military Performance Specification (Mil-Spec) allows PFAS-free firefighting formulations to be certified as meeting certain standardized operational goals for use in military settings. In addition to Mil-Spec requirements, PFAS-free firefighting formulations can also be certified through Underwriters Laboratories Standard for Safety, Foam Equipment and Liquid Concentrates, UL 162, which requires the new firefighting formulations be investigated for suitability and compatibility with the specific equipment with which they are intended to be used<ref>Underwriters Laboratories Inc., 2018. UL162, UL Standard for Safety, Foam Equipment and Liquid Concentrates, 8th Edition, Revised 2022. 40 pages. [https://global.ihs.com/doc_detail.cfm?document_name=UL%20162&item_s_key=00096960 Website]</ref>. Several PFAS-free foams have been certified under various parts of EN1568, the European Standard which specifies the necessary foam properties and performance requirements<ref>European Standards, 2018. CSN EN 1568-1 ed. 2: Fire extinguishing media - Foam concentrates - Part 1: Specification for medium expansion foam concentrates for surface application to water-immiscible liquids. 48 pages. [https://www.en-standard.eu/csn-en-1568-1-ed-2-fire-extinguishing-media-foam-concentrates-part-1-specification-for-medium-expansion-foam-concentrates-for-surface-application-to-water-immiscible-liquids/ European Standards Website.]</ref>. Both [https://serdp-estcp.mil/ ESTCP and SERDP] have supported (and continue to support) the development and field validation of PFAS-free firefighting formulations (e.g. [https://serdp-estcp.mil/projects/details/baa72637-e3c8-40ee-a007-f295311c72ad WP22-7456], [https://serdp-estcp.mil/projects/details/1bed98f7-dbe6-4bdd-98d2-1f9cfeb5f3d9/wp21-3465-project-overview WP21-3465], [https://serdp-estcp.mil/projects/details/bc932800-cfc8-4e86-a212-5f8c9d27f17c WP20-1535]). Both the US Federal Aviation Administration (FAA) and National Fire Protection Association (NFPA) have performed a variety of foam certification tests on numerous PFAS-free firefighting formulations<ref>Back, G.G., Farley, J.P., 2020. Evaluation of the Fire Protection Effectiveness of Fluorine Free Firefighting Foams. National Fire Protection Association, Fire Protection Research Foundation. [https://www.iafc.org/docs/default-source/1safehealthshs/effectivenessofflourinefreefoam.pdf Free Download].</ref><ref>Casey, J., Trazzi, D., 2022. Fluorine-Free Foam Testing. Federal Aviation Administration (FAA) Final Report. [https://www.airporttech.tc.faa.gov/DesktopModules/EasyDNNNews/DocumentDownload.ashx?portalid=0&moduleid=3682&articleid=2882&documentid=3054  Open Access Article]</ref>.
+
Wildlife receptors, specifically birds and mammals, are typically exposed to PFAS through uptake from dietary sources such as plants and invertebrates, along with direct soil ingestion during foraging activities. Dietary intake modeling typical for ecological risk assessments is the recommended approach for an evaluation of potential risks to wildlife species where PFAS exposure occurs primarily via dietary uptake from bioaccumulation pathways. Dietary intake modeling uses relevant exposure factors for each receptor group (terrestrial birds, terrestrial mammals, aquatic-dependent birds, and aquatic mammals) to determine a total daily intake (TDI) of PFAS via all potential exposure pathways. This approach requires determination of concentrations of PFAS in dietary items, which can be obtained by measuring PFAS in biota at sites or by using food web models to predict concentrations in biota using measured concentrations of PFAS in soil, sediment, or surface water. Food web models use bioaccumulation metrics such as bioaccumulation factors (BAFs) and biomagnification factors (BMFs) with measurements of PFAS in abiotic media to estimate concentrations in dietary items, including plants and benthic or pelagic invertebrates, to model wildlife exposure and calculate TDI. Once site-specific TDI values are calculated, they are compared to known TRVs identified from toxicity data with exposure doses associated with a lack of adverse effects (termed no observed adverse effect level [NOAEL]) or low adverse effects (termed lowest observed adverse effect level [LOAEL]), per standard risk assessment practice<ref name="USEPA1997"/>.
  
==Selection of Flushing Agent==
+
Recently, Conder ''et al.''<ref name="ConderEtAl2020"/>, Gobas ''et al.''<ref name="GobasEtAl2020"/>, and Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/> compiled bioaccumulation modeling parameters and approaches for terrestrial and aquatic food web modeling of a variety of commonly detected PFAS at AFFF sites. There are also several sources of TRVs which can be relied upon for estimating TDI values<ref name="ConderEtAl2020"/><ref name="GobasEtAl2020"/><ref name="ZodrowEtAl2021a"/><ref>Newsted, J.L., Jones, P.D., Coady, K., Giesy, J.P., 2005. Avian Toxicity Reference Values for Perfluorooctane Sulfonate. Environmental Science and Technology, 39(23), pp. 9357-9362. [https://doi.org/10.1021/es050989v doi: 10.1021/es050989v]</ref><ref name="Suski2020"/>. In general, the highest risk for PFAS is expected for smaller insectivore and omnivore receptors (e.g., shrews and other small rodents, small nonmigratory birds), which tend to be lower in trophic level and spend more time foraging in small areas similar to or smaller in size than the impacted area. Compared to smaller, lower-trophic level organisms, larger mammalian and avian carnivores are expected to have lower exposures from site-specific PFAS sources because they forage over larger areas that may include areas that are not impacted, as compared to small organisms with small home ranges<ref name="LarsonEtAl2018"/><ref name="ConderEtAl2020"/><ref name="GobasEtAl2020"/><ref name="Suski2020"/><ref name="ZodrowEtAl2021a"/>.
General industry guidance has typically recommended several rinses with water to remove PFAS from impacted equipment. Owing to the unique physical and chemical properties of PFAS, the use of room temperature water to remove PFAS from impacted equipment has not been very effective. To address these recalcitrant accumulations, companies are developing new methods to remove self-assembled PFAS bilayers from existing fire-fighting infrastructure so that it can be successfully transitioned to PFAS-free formulations. Arcadis developed a non-toxic cleaning agent, Fluoro Fighter<sup>TM</sup>, which has been demonstrated to be effective for removal of PFAS from equipment by disrupting the accumulated layers of PFAS coating the AFFF-wetted surfaces.  
 
  
Laboratory studies have supported the optimization of this PFAS removal method in fire suppression system piping obtained from a commercial airport hangar in Sydney, Australia<ref name="LangEtAl2022"/>. Prior to removal from the hangar, the stainless-steel pipe held PFAS-containing AFFF for more than three decades. Results indicated that Fluoro Fighter<sup>TM</sup>, as well as flushing at elevated temperatures, removed more surface associated PFAS in comparison to equivalent extractions using methanol or water at room temperature. ESTCP has supported (and continues to support) the development and field validation of best practices for methodologies to clean foam delivery systems (e.g. [https://serdp-estcp.mil/projects/details/1521652f-a8b2-4c52-9232-c1018989a6b1 ER20-5364], [https://serdp-estcp.mil/projects/details/6d0750be-f20b-4765-bdfa-872adccaf37a ER20-5361], [https://serdp-estcp.mil/projects/details/0aa2fb20-b851-4b5b-ac64-e72795986b8a ER20-5369], [https://serdp-estcp.mil/projects/details/4fd2e4ab-ddb7-40f8-835e-e1d637c0d650 ER21-7229]).
+
Available information regarding PFAS exposure pathways and effects in aquatic life, terrestrial invertebrates and plants, as well as aquatic and terrestrial wildlife allow ecological risk assessment methods to be applied as outlined by USEPA<ref name="USEPA1997"/> to site-specific PFAS risk assessments. Additionally, food web modeling can be used in site-specific PFAS risk assessment to develop initial estimates of dietary concentrations for aquatic and terrestrial wildlife, which can be confirmed with tissue sampling programs at a site.
  
==PFAS Verification Testing==
+
==PFAS Risk Assessment Data Gaps==
In general, PFAS sampling techniques used to support firefighting formulation transition activities are consistent with conventional sampling techniques used in the environmental industry, but special consideration is made regarding high concentration PFAS materials, elevated detection levels, cross-contamination potential, precursor content, and matrix interferences. The analytical method selected should be appropriate for the regulatory requirements in the site area.
+
There are a number of data gaps currently associated with PFAS risk assessment including the following:
 +
*'''Unmeasured PFAS:''' There are a number of additional PFAS that we know little about and many PFAS that we are unable to quantify in the environment. The approach to dealing with the lack of information on the overwhelming number of PFAS is being debated; in the meantime, however, PFAS beyond PFOS and PFOA are being studied more, and this information will result in improved characterization of risks for other PFAS.  
  
==Rinsate Treatment==
+
*'''Mixtures:''' Another major challenge in effects assessment for PFAS, for both human health risk assessments and environmental risk assessments, is understanding the potential importance of mixtures of PFAS. Considering the limited human health and ecological toxicity data available for just a few PFAS, the understanding of the relative toxicity, additivity, or synergistic effects of PFAS in mixtures is just beginning.
Numerous technologies for treatment of PFAS-impacted water sources, including rinsates, have been and are currently being developed. These include separation technologies such as [[PFAS Ex Situ Water Treatment|foam fractionation, nanofiltration, sorbents/flocculants, ion exchange resins, reverse osmosis, and destructive technologies such as sonolysis, electrochemical oxidation, hydrothermal alkaline treatment]], [[PFAS Treatment by Electrical Discharge Plasma |enhanced contact plasma]], and [[Supercritical Water Oxidation (SCWO) |supercritical water oxidation (SCWO)]]. Many of these technologies have rapidly developed from bench-scale (e.g., microcosms, columns, single reactors) to commercially available field-scale units capable of managing PFAS-impacted waters of varying waste volumes and PFAS compositions and concentrations. Ongoing field research continues to improve the treatment efficiency, reliability, and versatility of these technologies, both individually and as coupled treatment solutions (e.g., treatment train). ESTCP has supported (and continues to support) the development and field validation of separation and destructive technologies for treatment of PFAS-impacted water sources, including rinsates (e.g. [https://serdp-estcp.mil/projects/details/0c7af048-3a00-471f-9480-292aa78ecd4f ER20-5370], [https://serdp-estcp.mil/projects/details/0aa2fb20-b851-4b5b-ac64-e72795986b8a ER20-5369], [https://serdp-estcp.mil/projects/details/0d7c91a8-d755-4876-a8bb-c3e896feee0d ER20-5350], [https://serdp-estcp.mil/projects/details/790e2dda-1f7b-4ff5-b77e-08ed10a456b1 ER20-5355]).  
 
  
Remedy selection for treatment of rinsates involves several key factors. It is critical that environmental practitioners have up-to-date technical and practical knowledge on the suitability of these remedial options for different site conditions, treatment volumes, PFAS composition (e.g., presence of precursors, co-contaminants), PFAS concentrations, safety considerations, potential for undesired byproducts (e.g., perchlorate, disinfection byproducts), and treatment costs (e.g., energy demand, capital costs, operational labor).
+
*'''Toxicity Data Gaps:''' For environmental risk assessments, some organisms such as reptiles and benthic invertebrates do not have toxicity data available. Benchmark or threshold concentrations of PFAS in environmental media intended to be protective of wildlife and aquatic organisms suffer from significant uncertainty in their derivation due to the limited number of species for which data are available. As species-specific data becomes available for more types of organisms, the accuracy of environmental risk assessments is likely to improve.  
  
 
==References==
 
==References==
Line 129: Line 99:
  
 
==See Also==
 
==See Also==
[https://portal.ct.gov/-/media/CFPC/KO/2022/Latest-News/DESPP-DEEP-AFFF-MuniFDupdate-2022-05-26.pdf  Connecticut Take-Back Program for municipal fire departments using AFFF containing PFAS]
+
[https://www.atsdr.cdc.gov/pfas/health-studies/index.html Agency for Toxic Substances and Disease Registry (ATSDR) PFAS Health Studies]
 
 
[https://www.arcadis.com/en-us/knowledge-hub/blog/united-states/johnsie-lang/2021/transitioning-to-pfas-free-firefighting  Arcadis blog on Fluoro Fighter<sup>TM</sup>]
 
 
 
[https://serdp-estcp.mil/projects/details/1521652f-a8b2-4c52-9232-c1018989a6b1  Project Summary ESTCP ER20-5634: Demonstration and Validation of Environmentally Sustainable Methods to Effectively Remove PFAS from Fire Suppression Systems]
 
 
 
[https://serdp-estcp.org/projects/details/0d7c91a8-d755-4876-a8bb-c3e896feee0d  Project Summary ESTCP ER20-5350: Supercritical Water Oxidation (SCWO) for Complete PFAS Destruction]
 

Latest revision as of 18:26, 15 October 2025

Remediation of Stormwater Runoff Contaminated by Munition Constituents

Past and ongoing military operations have resulted in contamination of surface soil with munition constituents (MC), which have human and environmental health impacts. These compounds can be transported off site via stormwater runoff during precipitation events. Technologies to “trap and treat” surface runoff before it enters downstream receiving bodies (e.g., streams, rivers, ponds) (see Figure 1), and which are compatible with ongoing range activities are needed. This article describes a passive and sustainable approach for effective management of munition constituents in stormwater runoff.

Related Article(s):


Contributor: Mark E. Fuller

Key Resource(s):

  • SERDP Project ER19-1106: Development of Innovative Passive and Sustainable Treatment Technologies for Energetic Compounds in Surface Runoff on Active Ranges

Background

Surface Runoff Characteristics and Treatment Approaches

File:FullerFig1.png
Figure 1. Conceptual model of passive trap and treat approach for MC removal from stormwater runoff

During large precipitation events the rate of water deposition exceeds the rate of water infiltration, resulting in surface runoff (also called stormwater runoff). Surface characteristics including soil texture, presence of impermeable surfaces (natural and artificial), slope, and density and type of vegetation all influence the amount of surface runoff from a given land area. The use of passive systems such as retention ponds and biofiltration cells for treatment of surface runoff is well established for urban and roadway runoff. Treatment in those cases is typically achieved by directing runoff into and through a small constructed wetland, often at the outlet of a retention basin, or via filtration by directing runoff through a more highly engineered channel or vault containing the treatment materials. Filtration based technologies have proven to be effective for the removal of metals, organics, and suspended solids[1][2][3][4].

Surface Runoff on Ranges

Surface runoff represents a major potential mechanism through which energetics residues and related materials are transported off site from range soils to groundwater and surface water receptors (Figure 2). This process is particularly important for energetics that are water soluble (e.g., NTO and NQ) or generate soluble daughter products (e.g., DNAN and TNT). While traditional MC such as RDX and HMX have limited aqueous solubility, they also exhibit recalcitrance to degrade under most natural conditions. RDX and perchlorate are frequent groundwater contaminants on military training ranges. While actual field measurements of energetics in surface runoff are limited, laboratory experiments have been performed to predict mobile energetics contamination levels based on soil mass loadings[5][6].

Toxicological Effects of PFAS

The characterization of toxicological effects in human health risk assessments is based on toxicological studies of mammalian exposures to per- and polyfluoroalkyl substances (PFAS), primarily studies involving perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). The most sensitive noncancer adverse effects involve the liver and kidney, immune system, and various developmental and reproductive endpoints[7]. A select number of PFAS have been evaluated for carcinogenicity, primarily using epidemiological data. Only PFOS and PFOA (and their derivatives) have sufficient data for USEPA to characterize as Likely to Be Carcinogenic to Humans via the oral route of exposure. Epidemiological studies provided evidence of bladder, prostate, liver, kidney, and breast cancers in humans related to PFOS exposure, as well as kidney and testicular cancer in humans and limited evidence of breast cancer related to PFOA exposure[7][8][9].

USEPA’s Integrated Risk Management System (IRIS) Program is developing Toxicological Reviews to improve understanding of the toxicity of several additional PFAS (i.e., not solely PFOA and PFOS). Toxicological Reviews provide an overview of cancer and noncancer health effects based on current literature and, where data are sufficient, derive human health toxicity criteria (i.e., human health oral reference doses and cancer slope factors) that form the basis for risk-based decision making. For risk assessors, these documents provide USEPA reference doses and cancer slope factors that can be used with exposure information and other considerations to assess human health risk. Final Toxicological Reviews have been completed for the following PFAS:

  • Perfluorooctanesulfonic acid (PFOS)
  • Perfluorooctanoic acid (PFOA)
  • Perfluorobutanoic acid (PFBA)
  • Perfluorohexanoic acid (PFHxA)
  • Perfluorobutane sulfonic acid (PFBS)
  • Perfluoropropionic acid (PFPrA)
  • Perfluorohexane sulfonic acid (PFHxS)
  • Lithium bis[(trifluoromethyl)sulfonyl]azanide (HQ-115)
  • Hexafluoropropylene oxide dimer acid (HFPO DA) and its Ammonium Salt

Toxicity assessments are ongoing for the following PFAS:

  • Perfluorononanoic acid (PFNA)
  • Perfluorodecanoic acid (PFDA)

It is important to note human health toxicity criteria for inhalation of PFAS are not included in the Final Toxicological Reviews and are not currently available. In addition to IRIS, state agencies have developed peer-reviewed provisional toxicity values that have been incorporated into USEPA’s RSLs, which are updated biannually. These values have not been reviewed by or incorporated into IRIS.

With respect to ecological toxicity, effects on reproduction, growth, and development of avian and mammalian wildlife have been documented in controlled laboratory studies of exposures of standard toxicological test species (e.g., mice, quail) to PFAS. Many of these studies have been reviewed[10][11][12][13] to derive ecological Toxicity Reference Values (TRVs). TRVs can be used alongside exposure information and other considerations to assess ecological risk. Avian and mammalian wildlife receptors are generally expected to have the highest risks due to PFAS exposure. Direct toxicity to aquatic life, such as fish and invertebrates, from exposure to sediment and surface water also occurs, though concentrations in water associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are less sensitive to PFAS when compared to terrestrial wildlife, with risk-based PFAS concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife[13].

PFAS Screening Levels for Human Health and Ecological Risk Assessments

Human Health Screening Levels

Human health screening levels for PFAS have been modified multiple times over the last decade and, in the United States, are currently available for drinking water and soil exposures as Maximum Contaminant Levels (MCLs) and USEPA Regional Screening Levels (RSLs). USEPA finalized a National Primary Drinking Water Regulation (NPDWR) for six PFAS[7]:

  • Perfluorooctanoic acid (PFOA)
  • Perfluorooctane sulfonic acid (PFOS)
  • Perfluorohexane sulfonic acid (PFHxS)
  • Perfluorononanoic acid (PFNA)
  • Hexafluoropropylene oxide dimer acid (HFPO-DA, commonly known as GenX chemicals)
  • Perfluorobutane sulfonic acid (PFBS)

MCLs are enforceable drinking water standards based on the most recently available toxicity information that consider available treatment technologies and costs. The MCLs for PFAS include a Hazard Index of 1 for combined exposures to four PFAS. RSLs are developed for use in risk assessments and include soil and tap water screening levels for multiple PFAS. Soil RSLs are based on residential/unrestricted and commercial/industrial land uses, and calculations of site-specific RSLs are available.

Internationally, Canada and the European Union have also promulgated drinking water standards for select PFAS. However, large discrepancies exist among the various regulatory organizations, largely due to the different effect endpoints and exposure doses being used to calculate risk-based levels. The PFAS guidance from the Interstate Technology and Regulatory Council (ITRC) in the US includes a regularly updated compilation of screening values for PFAS and is available on their PFAS website[14]: https://pfas-1.itrcweb.org.

Ecological Screening Levels

Most peer-reviewed literature and regulatory-based environmental quality benchmarks have been developed using data for PFOS and PFOA; however, other select PFAAs have been evaluated for potential effects to aquatic receptors[14][13][10]. USEPA has developed water quality criteria for aquatic life[15][16][17] for PFOA and PFOS. Following extensive reviews of the peer-reviewed literature, Zodrow et al.[13] used the USEPA Great Lakes Initiative methodology[18] to calculate acute and chronic screening levels for aquatic life for 23 PFAS. The Argonne National Laboratory has also developed Ecological Screening Levels for multiple PFAS[19]. In contrast to surface water aquatic life benchmarks, sediment benchmark values are limited. For terrestrial systems, screening levels for direct exposure of soil plants and invertebrates to PFAS in soils have been developed for multiple AFFF-related PFAS[10][13], and the Canadian Council of Ministers of Environment developed several draft thresholds protective of direct toxicity of PFOS in soil[20].

Wildlife screening levels for abiotic media are back-calculated from food web models developed for representative receptors. Both Zodrow et al.[13] and Grippo et al.[19] include the development of risk-based screening levels for wildlife. The Michigan Department of Community Health[21] derived a provisional PFOS surface water value for avian and mammalian wildlife. In California, the San Francisco Bay Regional Water Quality Control Board developed terrestrial habitat soil ecological screening levels based on values developed in Zodrow et al.[13]. For PFOS only, a dietary screening level (i.e. applicable to the concentration of PFAS measured in dietary items) has been developed for mammals at 4.6 micrograms per kilogram (μg/kg) wet weight (ww), and for avians at 8.2 μg/kg ww[22].

Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Human Health

Exposure pathways and effects for select PFAS are well understood, such that standard human health risk assessment approaches can be used to quantify risks for populations relevant to a site. Human health exposures via drinking water have been the focus in risk assessments and investigations at PFAS sites[23][24]. Risk assessment approaches for PFAS in drinking water follow typical, well-established drinking water risk assessment approaches for chemicals as detailed in regulatory guidance documents for various jurisdictions.

Incidental exposures to soil and dusts for PFAS can occur during a variety of soil disturbance activities, such as gardening and digging, hand-to-mouth activities, and intrusive groundwork by industrial or construction workers. As detailed by the ITRC[14], many US states and USEPA have calculated risk-based screening levels for these soil and drinking water pathways (and many also include dermal exposures to soils) using well-established risk assessment guidance.

Field and laboratory studies have shown that some PFCAs and PFSAs bioaccumulate in fish and other aquatic life at rates that could result in relevant dietary PFAS exposures for consumers of fish and other seafood[25][26][27][28][29][30][31][32][33][34]. In addition to fish, terrestrial wildlife can accumulate contaminants from impacted sites, resulting in potential exposures to consumers of wild game[35]. Additionally, exposures can occur though consumption of homegrown produce or agricultural products that originate from areas irrigated with PFAS-impacted groundwater, or that are amended with biosolids that contain PFAS, or that contain soils that were directly affected by PFAS releases[36]. Multiple studies have found PFAS can be taken up by plants from soil porewater[37][38][39], and livestock can accumulate PFAS from drinking water and/or feed[40]. Thus, when PFAS are present in surface water bodies where fishing or shellfish harvesting occurs or terrestrial areas where produce is grown or game is hunted, the bioaccumulation of PFAS into dietary items can be an important pathway for human exposure.

PFAAs such as PFOA and PFOS are not expected to volatilize from PFAS-impacted environmental media[8][9] such as soil and groundwater, which are the primary focus of most site-specific risk assessments. In contrast to non-volatile PFAAs, fluorotelomer alcohols (FTOHs) are among the more widely studied of the volatile PFAS. FTOHs are transient in the atmosphere with a lifetime of 20 days[41]. At most AFFF sites under evaluation, AFFF releases have occurred many years before such that FTOH may no longer be present. As such, the current assumption is that volatile PFAS, such as FTOHs historically released at the site, will have transformed to stable, low-volatility PFAS, such as PFAAs in soil or groundwater, or will they have diffused to the outdoor atmosphere. There is no evidence that FTOHs or other volatile PFAS are persistent in groundwater or soils such that they present an indoor vapor intrusion pathway risk concern as observed for chlorinated solvents. Ongoing research continues for the vapor pathway[14].

General and site-specific human health exposure pathways and risk assessment methods as outlined by USEPA[42][43] can be applied to PFAS risk assessments for which human health toxicity values have been developed. Additionally, for risk assessments with dietary exposures of PFAS, standard risk assessment food web modeling can be used to develop initial estimates of dietary concentrations which can be confirmed with site-specific tissue sampling programs.

Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Ecological

Information available currently on exposures and effects of PFAS in ecological receptors indicate that the PFAS ecological risk issues at most sites are primarily associated with risks to vertebrate wildlife. Avian and mammalian wildlife are relatively sensitive to PFAS, and dietary intake via bioaccumulation in terrestrial and aquatic food webs can result in exposures that are dominated by the more accumulative PFAS[44][10][13]. Direct toxicity to aquatic life (e.g., fish, pelagic life, benthic invertebrates, and aquatic plants) can occur from exposure to sediment and surface water at effected sites. For larger areas, surface water concentrations associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are generally less sensitive, with risk-based concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife[13].

Aquatic life are exposed to PFAS through direct exposure in surface water and sediment. Ecological risk assessment approaches for PFAS for aquatic life follow standard risk assessment approaches. The evaluation of potential risks for aquatic life with direct exposure to PFAS in environmental media relies on comparing concentrations in external exposure media to protective, media-specific benchmarks, including the aquatic life risk-based screening levels discussed above[13][45].

When an area at the point of PFAS release is an industrial setting which does not feature favorable habitats for terrestrial and aquatic-dependent wildlife, the transport mechanisms may allow PFAS to travel offsite. If offsite or downgradient areas contain ecological habitat, then PFAS transported to these areas are expected to pose the highest risk potential to wildlife, particularly those areas that feature aquatic habitat[46][44].

Wildlife receptors, specifically birds and mammals, are typically exposed to PFAS through uptake from dietary sources such as plants and invertebrates, along with direct soil ingestion during foraging activities. Dietary intake modeling typical for ecological risk assessments is the recommended approach for an evaluation of potential risks to wildlife species where PFAS exposure occurs primarily via dietary uptake from bioaccumulation pathways. Dietary intake modeling uses relevant exposure factors for each receptor group (terrestrial birds, terrestrial mammals, aquatic-dependent birds, and aquatic mammals) to determine a total daily intake (TDI) of PFAS via all potential exposure pathways. This approach requires determination of concentrations of PFAS in dietary items, which can be obtained by measuring PFAS in biota at sites or by using food web models to predict concentrations in biota using measured concentrations of PFAS in soil, sediment, or surface water. Food web models use bioaccumulation metrics such as bioaccumulation factors (BAFs) and biomagnification factors (BMFs) with measurements of PFAS in abiotic media to estimate concentrations in dietary items, including plants and benthic or pelagic invertebrates, to model wildlife exposure and calculate TDI. Once site-specific TDI values are calculated, they are compared to known TRVs identified from toxicity data with exposure doses associated with a lack of adverse effects (termed no observed adverse effect level [NOAEL]) or low adverse effects (termed lowest observed adverse effect level [LOAEL]), per standard risk assessment practice[43].

Recently, Conder et al.[10], Gobas et al.[11], and Zodrow et al.[13] compiled bioaccumulation modeling parameters and approaches for terrestrial and aquatic food web modeling of a variety of commonly detected PFAS at AFFF sites. There are also several sources of TRVs which can be relied upon for estimating TDI values[10][11][13][47][12]. In general, the highest risk for PFAS is expected for smaller insectivore and omnivore receptors (e.g., shrews and other small rodents, small nonmigratory birds), which tend to be lower in trophic level and spend more time foraging in small areas similar to or smaller in size than the impacted area. Compared to smaller, lower-trophic level organisms, larger mammalian and avian carnivores are expected to have lower exposures from site-specific PFAS sources because they forage over larger areas that may include areas that are not impacted, as compared to small organisms with small home ranges[44][10][11][12][13].

Available information regarding PFAS exposure pathways and effects in aquatic life, terrestrial invertebrates and plants, as well as aquatic and terrestrial wildlife allow ecological risk assessment methods to be applied as outlined by USEPA[43] to site-specific PFAS risk assessments. Additionally, food web modeling can be used in site-specific PFAS risk assessment to develop initial estimates of dietary concentrations for aquatic and terrestrial wildlife, which can be confirmed with tissue sampling programs at a site.

PFAS Risk Assessment Data Gaps

There are a number of data gaps currently associated with PFAS risk assessment including the following:

  • Unmeasured PFAS: There are a number of additional PFAS that we know little about and many PFAS that we are unable to quantify in the environment. The approach to dealing with the lack of information on the overwhelming number of PFAS is being debated; in the meantime, however, PFAS beyond PFOS and PFOA are being studied more, and this information will result in improved characterization of risks for other PFAS.
  • Mixtures: Another major challenge in effects assessment for PFAS, for both human health risk assessments and environmental risk assessments, is understanding the potential importance of mixtures of PFAS. Considering the limited human health and ecological toxicity data available for just a few PFAS, the understanding of the relative toxicity, additivity, or synergistic effects of PFAS in mixtures is just beginning.
  • Toxicity Data Gaps: For environmental risk assessments, some organisms such as reptiles and benthic invertebrates do not have toxicity data available. Benchmark or threshold concentrations of PFAS in environmental media intended to be protective of wildlife and aquatic organisms suffer from significant uncertainty in their derivation due to the limited number of species for which data are available. As species-specific data becomes available for more types of organisms, the accuracy of environmental risk assessments is likely to improve.

References

  1. ^ Sansalone, J.J., 1999. In-situ performance of a passive treatment system for metal source control. Water Science and Technology, 39(2), pp. 193-200. doi: 10.1016/S0273-1223(99)00023-2
  2. ^ Deletic, A., Fletcher, T.D., 2006. Performance of grass filters used for stormwater treatment—A field and modelling study. Journal of Hydrology, 317(3-4), pp. 261-275. doi: 10.1016/j.jhydrol.2005.05.021
  3. ^ Grebel, J.E., Charbonnet, J.A., Sedlak, D.L., 2016. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Research, 88, pp. 481-491. doi: 10.1016/j.watres.2015.10.019
  4. ^ Seelsaen, N., McLaughlan, R., Moore, S., Ball, J.E., Stuetz, R.M., 2006. Pollutant removal efficiency of alternative filtration media in stormwater treatment. Water Science and Technology, 54(6-7), pp. 299-305. doi: 10.2166/wst.2006.617
  5. ^ Cubello, F., Polyakov, V., Meding, S.M., Kadoya, W., Beal, S., Dontsova, K., 2024. Movement of TNT and RDX from composition B detonation residues in solution and sediment during runoff. Chemosphere, 350, Article 141023. doi: 10.1016/j.chemosphere.2023.141023
  6. ^ Karls, B., Meding, S.M., Li, L., Polyakov, V., Kadoya, W., Beal, S., Dontsova, K., 2023. A laboratory rill study of IMX-104 transport in overland flow. Chemosphere, 310, Article 136866. doi: 10.1016/j.chemosphere.2022.136866  Open Access Article
  7. ^ 7.0 7.1 7.2 United States Environmental Protection Agency (USEPA), 2024. Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation. Website
  8. ^ 8.0 8.1 United States Environmental Protection Agency (USEPA), 2016. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA 822-R-16-004. Free Download  Report.pdf
  9. ^ 9.0 9.1 United States Environmental Protection Agency (USEPA), 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water, EPA 822-R-16-005. Free Download  Report.pdf
  10. ^ 10.0 10.1 10.2 10.3 10.4 10.5 10.6 Conder, J., Arblaster, J., Larson, E., Brown, J., Higgins, C., 2020. Guidance for Assessing the Ecological Risks of PFAS to Threatened and Endangered Species at Aqueous Film Forming Foam-Impacted Sites. Strategic Environmental Research and Development Program (SERDP) Project ER 18-1614. Project Website  Guidance Document
  11. ^ 11.0 11.1 11.2 11.3 Gobas, F.A.P.C., Kelly, B.C., Kim, J.J., 2020. Final Report: A Framework for Assessing Bioaccumulation and Exposure Risks of PFAS in Threatened and Endangered Species on AFFF-Impacted Sites. SERDP Project ER18-1502. Project Website  Final Report
  12. ^ 12.0 12.1 12.2 Suski, J.G., 2020. Investigating Potential Risk to Threatened and Endangered Species from Per- and Polyfluoroalkyl Substances (PFAS) on Department of Defense (DoD) Sites. SERDP Project ER18-1626. Project Website  Report.pdf
  13. ^ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 Zodrow, J.M., Frenchmeyer, M., Dally, K., Osborn, E., Anderson, P. and Divine, C., 2021. Development of Per and Polyfluoroalkyl Substances Ecological Risk-Based Screening Levels. Environmental Toxicology and Chemistry, 40(3), pp. 921-936. doi: 10.1002/etc.4975   Open Access Article
  14. ^ 14.0 14.1 14.2 14.3 Interstate Technology and Regulatory Council (ITRC) 2023. PFAS Technical and Regulatory Guidance Document. ITRC PFAS Website
  15. ^ United States Environmental Protection Agency (USEPA), 2022. Fact Sheet: Draft 2022 Aquatic Life Ambient Water Quality Criteria for Perfluorooctanoic acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)). Office of Water, EPA 842-D-22-005. Fact Sheet
  16. ^ United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctanoic Acid (PFOA). Office of Water, EPA-842-R-24-002. Report.pdf
  17. ^ United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA-842-R-24-003. Report.pdf
  18. ^ United States Environmental Protection Agency (USEPA), 2012. Water Quality Guidance for the Great Lakes System. Part 132. Government Website  Part132.pdf
  19. ^ 19.0 19.1 Grippo, M., Hayse, J., Hlohowskyj, I., Picel, K., 2024. Derivation of PFAS Ecological Screening Values - Update. Argonne National Laboratory Environmental Science Division. Report.pdf
  20. ^ Canadian Council of Ministers of the Environment (CCME), 2021. Canadian Soil and Groundwater Quality Guidelines for the Protection of Environmental and Human Health, Perfluorooctane Sulfonate (PFOS). Open Access Government Document
  21. ^ Dykema, L.D., 2015. Michigan Department of Community Health Final Report, USEPA Great Lakes Restoration Initiative (GLRI) Project, Measuring Perfluorinated Compounds in Michigan Surface Waters and Fish. Grant GL-00E01122. Free Download  Report.pdf
  22. ^ Environment and Climate Change Canada, 2018. Federal Environmental Quality Guidelines, Perfluorooctane Sulfonate (PFOS). Repoprt.pdf
  23. ^ Post, G.B., Cohn, P.D., Cooper, K.R., 2012. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, pp. 93-117. doi: 10.1016/j.envres.2012.03.007
  24. ^ Guelfo, J.L., Marlow, T., Klein, D.M., Savitz, D.A., Frickel, S., Crimi, M., Suuberg, E.M., 2018. Evaluation and Management Strategies for Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted U.S. Northeast Communities. Environmental Health Perspectives,126(6), 13 pages. doi: 10.1289/EHP2727  Open Access Article
  25. ^ Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.189-195. doi: 10.1002/etc.5620220125
  26. ^ Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.196-204. doi: 10.1002/etc.5620220126
  27. ^ Chen, F., Gong, Z., Kelly, B.C., 2016. Bioavailability and bioconcentration potential of perfluoroalkyl-phosphinic and -phosphonic acids in zebrafish (Danio rerio): Comparison to perfluorocarboxylates and perfluorosulfonates. Science of The Total Environment, 568, pp. 33-41. doi: 10.1016/j.scitotenv.2016.05.215
  28. ^ Fang, S., Zhang, Y., Zhao, S., Qiang, L., Chen, M., Zhu, L., 2016. Bioaccumulation of per fluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm. Environmental Toxicology and Chemistry, 35(12), pp. 3005-3013. doi: 10.1002/etc.3483
  29. ^ Bertin, D., Ferrari, B.J.D. Labadie, P., Sapin, A., Garric, J., Budzinski, H., Houde, M., Babut, M., 2014. Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment. Environmental Pollution, 189, pp. 27-34. doi: 10.1016/j.envpol.2014.02.018
  30. ^ Bertin, D., Labadie, P., Ferrari, B.J.D., Sapin, A., Garric, J., Geffard, O., Budzinski, H., Babut. M., 2016. Potential exposure routes and accumulation kinetics for poly- and perfluorinated alkyl compounds for a freshwater amphipod: Gammarus spp. (Crustacea). Chemosphere, 155, pp. 380-387. doi: 10.1016/j.chemosphere.2016.04.006
  31. ^ Dai, Z., Xia, X., Guo, J., Jiang, X., 2013. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna. Chemosphere, 90(5), pp.1589-1596. doi: 10.1016/j.chemosphere.2012.08.026
  32. ^ Prosser, R.S., Mahon, K., Sibley, P.K., Poirier, D., Watson-Leung, T. 2016. Bioaccumulation of perfluorinated carboxylates and sulfonates and polychlorinated biphenyls in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from field-collected sediments. Science of The Total Environment, 543(A), pp. 715-726. doi: 10.1016/j.scitotenv.2015.11.062
  33. ^ Rich, C.D., Blaine, A.C., Hundal, L., Higgins, C., 2015. Bioaccumulation of Perfluoroalkyl Acids by Earthworms (Eisenia fetida) Exposed to Contaminated Soils. Environmental Science and Technology, 49(2) pp. 881-888. doi: 10.1021/es504152d
  34. ^ Muller, C.E., De Silva, A.O., Small, J., Williamson, M., Wang, X., Morris, A., Katz, S., Gamberg, M., Muir, D.C.G., 2011. Biomagnification of Perfluorinated Compounds in a Remote Terrestrial Food Chain: Lichen–Caribou–Wolf. Environmental Science and Technology, 45(20), pp. 8665-8673. doi: 10.1021/es201353v
  35. ^ Cite error: Invalid <ref> tag; no text was provided for refs named ConderEtAl2021
  36. ^ Brown, J.B, Conder, J.M., Arblaster, J.A., Higgins, C.P., 2020. Assessing Human Health Risks from Per- and Polyfluoroalkyl Substance (PFAS)-Impacted Vegetable Consumption: A Tiered Modeling Approach. Environmental Science and Technology, 54(23), pp. 15202-15214. doi: 10.1021/acs.est.0c03411  Open Access Article
  37. ^ Blaine, A.C., Rich, C.D., Hundal, L.S., Lau, C., Mills, M.A., Harris, K.M., Higgins, C.P., 2013. Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environmental Science and Technology, 47(24), pp. 14062-14069. doi: 10.1021/es403094q  Free Download from epa.gov
  38. ^ Blaine, A.C., Rich, C.D., Sedlacko, E.M., Hyland, K.C., Stushnoff, C., Dickenson, E.R.V., Higgins, C.P., 2014. Perfluoroalkyl Acid Uptake in Lettuce (Lactuca sativa) and Strawberry (Fragaria ananassa) Irrigated with Reclaimed Water. Environmental Science and Technology, 48(24), pp. 14361-14368. doi: 10.1021/es504150h
  39. ^ Ghisi, R., Vamerali, T., Manzetti, S., 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, pp. 326-341. doi: 10.1016/j.envres.2018.10.023
  40. ^ van Asselt, E.D., Kowalczyk, J., van Eijkeren, J.C.H., Zeilmaker, M.J., Ehlers, S., Furst, P., Lahrssen-Wiederhold, M., van der Fels-Klerx, H.J., 2013. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk. Food Chemistry, 141(2), pp.1489-1495. doi: 10.1016/j.foodchem.2013.04.035
  41. ^ Ellis, D.A., Martin, J.W., De Silva, A.O., Mabury, S.A., Hurley, M.D., Sulbaek Andersen, M.P., Wallington, T.J., 2004. Degradation of Fluorotelomer Alcohols:  A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environmental Science and Technology, 38(12), pp. 3316-3321. doi: 10.1021/es049860w
  42. ^ United States Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part A). Office of Solid Waste and Emergency Response, EPA/540/1-89/002. Free Download  Report.pdf
  43. ^ 43.0 43.1 43.2 United States Environmental Protection Agency (USEPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Office of Solid Waste and Emergency Response, EPA 540-R-97-006. Free Download  Report.pdf
  44. ^ 44.0 44.1 44.2 Larson, E.S., Conder, J.M., Arblaster, J.A., 2018. Modeling avian exposures to perfluoroalkyl substances in aquatic habitats impacted by historical aqueous film forming foam releases. Chemosphere, 201, pp. 335-341. doi: 10.1016/j.chemosphere.2018.03.004
  45. ^ United States Environmental Protection Agency (USEPA), 2024. National Recommended Water Quality Criteria - Aquatic Life Criteria Table. USEPA Website
  46. ^ Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33(9), pp. 1921-1929. doi: 10.1002/etc.2663  Open Access Article
  47. ^ Newsted, J.L., Jones, P.D., Coady, K., Giesy, J.P., 2005. Avian Toxicity Reference Values for Perfluorooctane Sulfonate. Environmental Science and Technology, 39(23), pp. 9357-9362. doi: 10.1021/es050989v

See Also

Agency for Toxic Substances and Disease Registry (ATSDR) PFAS Health Studies