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2 

 

Abstract 21 

The environmental fate of 3-nitro-1,2,4-triazol-5-one (NTO) and other insensitive 22 

munitions constituents (MCs) is of significant concern due to their high water solubility 23 

and mobility relative to legacy MCs. Plant-based biochars have been shown to possess a 24 

considerable electron storage capacity (ESC), which enables them to undergo reversible 25 

electron transfer reactions. We hypothesized biochar can act as a rechargeable electron 26 

donor to effect abiotic reduction of MCs repeatedly through its ESC. To test this 27 

hypothesis, MC reduction experiments were performed using wood-derived biochars that 28 

were oxidized with dissolved oxygen or reduced with dithionite. Removal of aqueous 29 

NTO, an anion at circumneutral pH, by oxidized biochar was minimal and occurred 30 

through reversible adsorption. In contrast, NTO removal by reduced biochar was much 31 

more pronounced and occurred predominantly through reduction, with concomitant 32 

formation of 3-amino-1,2,4-triazol-5-one (ATO). Mass balance and electron recovery with 33 

ferricyanide further showed that (1) the amount of NTO reduced to ATO was relatively 34 

constant (85‒100 μmol per gram of biochar) at pH 6–10; (2) the fraction of biochar ESC 35 

reactive toward NTO was ca. 30% of that toward ferricyanide; (3) the NTO-reactive 36 

fraction of the ESC was regenerable over multiple redox cycles. We also evaluated biochar 37 

transformation of other MCs, including nitroguanidine (NQ), 2,4-dinitroanisole (DNAN), 38 

and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). While mass and electron balances could 39 

not be established due to sorption, DNAN and RDX reduction by reduced biochar was 40 

confirmed via detection of multiple reduction products. In contrast, NQ was not reduced 41 

under any of the conditions tested. This study is the first demonstration of organic 42 

contaminant degradation through biochar's rechargeable ESC. Our results indicate biochar 43 
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is a regenerable electron storage medium and sorbent that can remove MCs from water through 44 

concurrent reduction and sorption, and is thus potentially useful for pollution control and 45 

remediation at military facilities. 46 

  47 
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Introduction 48 

Munitions constituents (MCs) used in explosive formulations have caused 49 

contamination of soil and groundwater at/near military sites across the U.S.1 3-Nitro-1,2,4-50 

triazol-5-one (NTO), nitroguanidine (NQ), and 2,4-dinitroanisole (DNAN) are the major 51 

constituents in the insensitive formulation IMX-101, and NTO, DNAN, and hexahydro-52 

1,3,5-trinitro-1,3,5-triazine (RDX) are the main constituents in the formulation IMX-104.2, 53 

3 While insensitive MCs are less prone to accidental detonation than legacy MCs such as 54 

2,4,6-trinitrotoluene (TNT), they are more water-soluble.4-6 For example, the solubility of 55 

NTO is 16,642 mg/L at 25 °C7, two orders of magnitude higher than that of TNT (100–128 56 

mg/L at 25 °C).8, 9 This suggests that insensitive MCs are more leachable and mobile in the 57 

environment and thus may pose a significant contamination problem and health concern.4, 58 

10-14 Hence, it is necessary to develop cost-effective pollution control and remediation 59 

approaches for insensitive MCs at military sites. 60 

Biochar is a subset of black carbon produced through pyrolysis of biomass such as wood 61 

and grass.15, 16 Because of its high specific surface area, biochar has been evaluated as a sorbent 62 

for removing organic chemicals17-19 including pesticides, dyes, and MCs20, 21 such as TNT and 63 

RDX. However, the effectiveness of biochar as a sorbent has not been evaluated against 64 

insensitive MCs like NTO, which is an anion at circumneutral pH (pKa = 3.76).22-24 65 

In addition to being a sorbent, biochar is capable of mediating redox reactions through two 66 

different mechanisms: electron conduction25-29 and electron storage.30, 31 The first mechanism 67 

requires external electron donor and acceptor to be in simultaneous contact with a conductive 68 

moiety in biochar, such as graphene domains32, 33 that conduct electrons from a donor to an 69 

acceptor such as 2,4-dinitrotoluene, RDX, and nitroglycerin.26-29 70 
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In contrast to the conduction mechanism, the electron storage mechanism involves redox-71 

facile functional groups in biochar. Electrons can be stored in biochar through reduction of its 72 

electron accepting functional groups, such as quinones, or removed from biochar through 73 

oxidation of its electron donating functional groups, such as hydroquinones.30 The capacity of a 74 

biochar to store and reversibly exchange electrons with its surroundings is termed electron 75 

storage capacity (ESC), and is operationally defined to be the sum of electron donating capacity 76 

(EDC) and electron accepting capacity (EAC).30, 31, 34 While EDC and EAC vary with the redox 77 

state of a biochar, the ESC is constant for a given pair of reductant and oxidant used to measure 78 

ESC.34, 35 Studies have shown that ESC is a common property of biochar prepared via pyrolysis 79 

of lignocellulosic biomass.35 Biochar ESC can range from 0.2 to 7 mmol e–/g, is distributed over 80 

a broad range of reduction potential, and is highly reversible over multiple redox cycles.30, 34, 36-39 81 

Biochar can be an electron donor when its ESC is filled (i.e., its redox-facile functional 82 

groups reduced), and an electron accepter when its ESC is empty (i.e., its functional groups 83 

oxidized). Electrons stored in biochar have been shown to be partially available for abiotic 84 

reduction of metal(loid)s40, 41, 42 and for microbial reduction of nitrate.31 However, it is unknown 85 

whether electrons stored in biochar are available for organic contaminant degradation and, if so, 86 

to what extent, and whether this degradative capacity is regenerable. 87 

We hypothesized that biochar ESC can be accessed by MCs for reductive transformation, 88 

and that this process can be repeated through recharge of biochar ESC. This study was designed 89 

to (1) test this hypothesis, (2) determine the portion of ESC that is accessible to NTO and other 90 

MCs (DNAN, NQ, and RDX), and (3) produce data to support evaluation and development of 91 

biochar-based MC treatment/remediation systems. We performed batch experiments to assess the 92 

ability of wood-derived biochars to adsorb and degrade NTO in buffered solutions at pH 6−10 93 
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and in artificial stormwater runoff (ASR) at pH 6. Parallel experiments were conducted using 94 

dithionite-reduced and air-oxidized biochars to study MC reduction and adsorption, respectively. 95 

 96 

Materials and Methods 97 

Chemicals. NTO and RDX were obtained from U.S. Army Armament Research 98 

Development and Engineering Center (Picatinny, NJ). The RDX contained 3.8% octahydro-99 

1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) as an impurity. NQ (25% moisture content) and 100 

DNAN (98%) were purchased from Sigma-Aldrich (St. Louis, MO). 3-Amino-1,2,4-triazol-5-101 

one (ATO, >99%) was purchased from Princeton BioMolecular Research (Princeton, NJ). 2-102 

Amino-4-nitroanisole (2ANAN) and 4-amino-2-nitroanisole (4ANAN) were purchased from 103 

Apollo Scientific (Cheshire, UK), and 2,4-diaminoanisole (DAAN, 99.6%) from Honeywell 104 

Fluka (Charlotte, NC). The three nitroso reduction intermediates of RDX, hexahydro-1-nitroso-105 

3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and 106 

hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), were purchased from SRI International (Menlo 107 

Park, CA). Pure standards of NTO, NQ, DNAN, RDX, and HMX were acquired from 108 

AccuStandard (New Haven, CT). Additional chemicals for buffer solutions, ASR, pH control, 109 

high-performance liquid chromatograph (HPLC), and biochar redox titration, are provided in 110 

Table S1 of the Supporting Information. All chemicals were used as received. 111 

Biochars. Two wood-derived commercial biochars, Soil Reef biochar (SRB) and Rogue 112 

biochar (Rogue), were used. Physical-chemical properties of SRB and Rogue were measured and 113 

described in Section S1 (Supporting Information) and summarized in Table S2. SRB and Rogue 114 

are both derived from pine wood but were pyrolyzed at different temperatures (550 °C and 115 

900 °C, respectively). SRB was chosen for this study because it has been field-tested for 116 
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stormwater treatment43 and its ESC and reversibility were well-characterized31, 34, 40, 44. Rogue 117 

was included because its BET surface area (407±9 m2/g) and ESC (7.07±0.15 mmol/g) measured 118 

with titanium(III) citrate and dissolved O2 (DO) were the highest of all commercial biochars we 119 

have tested.35 These values are roughly two times those of SRB (158±3 m2/g and 3.54±0.13 120 

mmol/g, respectively). 121 

To facilitate MC reduction, SRB and Rogue particles in the 250–500 µm size range were 122 

ground at 4000 rpm for 3 min using a Beadbug 3 bead homogenizer (Benchmark Scientific Inc., 123 

Sayreville, NJ) to obtain a particle size of <53 µm. Ground biochars were then oxidized with DO 124 

in continuously aerated deionized water to deplete stored electrons and bring the EDC of biochar 125 

to zero with respect to DO (EH = +0.80 V vs. standard hydrogen electrode or SHE, at pH 7 and 126 

PO2 = 0.21 atm). Based on our previous work, SRB and Rogue needed to be oxidized in aerated 127 

deionized water for at least 3 d to ensure thorough oxidation of reduced functional groups34, 35. 128 

Oxidized biochar samples were collected on a glass microfiber filter, dried at 65 °C for 24 h, and 129 

stored in a desiccator until use. 130 

For each biochar, two types of samples were prepared: DO-oxidized biochar (SRBOX and 131 

RogueOX) and dithionite-reduced biochar (SRBRED and RogueRED). SRBOX or RogueOX were 132 

depleted of electrons and served as sorption controls, whereas SRBRED or RogueRED were used to 133 

study MC reduction. To prepare dithionite-reduced biochars, SRBOX and RogueOX were placed 134 

in an anaerobic glove box under 98±0.5% N2 and 2.0±0.5% H2 (PO2< 5 ppm) (Coy Laboratory, 135 

Grass Lake, MI) to deoxygenate. SRBOX or RogueOX was then reduced with freshly prepared 25 136 

mM sodium dithionite in 100 mM citrate buffer at pH 6.4 for 3 d (measured EH = ‒0.43 V vs. 137 

SHE). Dithionite was added in excess and was replenished as needed. After reduction, SRBRED 138 

and RogueRED were collected on a glass microfiber filter, rinsed thoroughly with copious DO-139 
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free deionized water, vacuum-dried, and stored in a desiccator in a glove box until use. All 140 

reported data are based on dry mass. 141 

Batch experiments. Batch reactors were set up and experiments were conducted inside an 142 

anaerobic glove box. SRBRED or RogueRED was used for MC reduction experiments, and SRBOX 143 

or RogueOX was used as nonreactive control and for MC sorption experiments. A summary of the 144 

conditions for batch experiments, including the initial concentration of MC, biochar dose, and 145 

solution matrices, is provided in Table S3. 146 

NTO reduction in buffer solutions. Batch experiments were performed with SRB for NTO 147 

reduction in pH 6, 8 and 10 buffer solutions. To initiate an experiment, a predetermined amount 148 

of SRBOX or SRBRED (0.40 or 0.80 g/L) was added to amber borosilicate reactors containing 125 149 

mL of 110 µM NTO in 50 mM pH buffer. MES, Tris, and CAPSO were used to maintain the pH 150 

at 6.0±0.1, 8.0±0.1, and 10.0±0.1, respectively. Blanks (no biochar) were prepared identically. 151 

All reactors were placed on an orbital shaker at 100 rpm. Samples of 0.625 mL were taken at 152 

different elapsed times and immediately passed through 0.22-µm PTFE syringe filters for HPLC 153 

analysis. Experiments were performed for up to 600 h until the concentration of ATO plateaued. 154 

All collected samples combined accounted for <10% of the total solution volume in each reactor. 155 

Removal of NTO and ATO due to sampling was accounted for to establish mass balance. After 156 

reaction, SRB was retrieved on a glass microfiber filter, vacuum-filtered, and rinsed thoroughly 157 

with deionized water. Since NTO and ATO (pKa = 8.71, Figure S1) did not sorb to SRB at pH 10 158 

(Figures 1(c) and S2), SRB samples retrieved from pH 6 and 8 reactors were extracted with 50 159 

mL of 50 mM CAPSO solution at pH 10 to recover sorbed NTO and ATO. Extraction was 160 

performed for up to 600 h and extracts (0.625 mL) were sampled at different times for HPLC 161 

analysis. 162 
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SRB electron content measurement. The electron content (i.e., EDC) of fresh SRBRED and 163 

spent SRBRED recovered from NTO experiment was measured using ferricyanide as an oxidant 164 

(EH = +0.43 V vs. SHE)45. Reactors containing fresh SRBOX and SRBOX exposed to the same 165 

NTO solution were included as controls. SRB samples were placed in 0.23 L of 1 mM 166 

ferricyanide solution in 50 mM MES, Tris, or CAPSO buffer. Electrons transferred from SRB to 167 

ferricyanide were determined based on the amount of ferricyanide consumed. Concentration of 168 

ferricyanide was measured by absorbance at 420 nm, using a Vernier LabQuest 2 UV-vis 169 

spectrophotometer (Beaverton, OR). The extinction coefficients of ferricyanide at pH 6, 8, and 170 

10 were 1135 ± 40, 1152 ± 40, and 1058 ± 40 M‒1·cm‒1, respectively. Each SRB sample was 171 

oxidized with ferricyanide for up to 72 h. After EDC measurement, SRB was collected by 172 

filtration and vacuum-dried at 65 °C for weight measurement. 173 

ESC reversibility for NTO reduction. Additional experiments were performed to assess the 174 

reversibility of ESC with respect to NTO reduction over three redox cycles. To prevent sorption 175 

of NTO and ATO to SRB, experiments were run at pH 10 in 50 mM CAPSO buffer. Four pairs 176 

of duplicate reactors containing 125 mL of 100 µM NTO were prepared: 0.80 g/L of SRBRED 177 

was added to the first two pairs of reactors, 0.80 g/L of SRBOX was added to the third pair of 178 

reactors, and no biochar was added to the last pair of reactors. For each cycle, NTO reduction 179 

was run for 24 h following the same procedures as described above. After reaction, SRB was 180 

retrieved on a glass microfiber filter, vacuum-filtered, thoroughly rinsed with 50 mL of 50 mM 181 

CAPSO buffer three times. For the first pair of reactors containing SRBRED, the retrieved 182 

SRBRED was reduced with 50 mL of 1 mM dithionite (total e‒ content = 100 µmol) for 24 h, 183 

washed with 50 mL of deoxygenated deionized water three times, and used in the next cycle of 184 

NTO reduction. This pair of reactors was labeled as "ESC-recharged". Note that, based on SRB 185 
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porosity, any residual dithionite remaining in the pores of SRBRED would contribute to <1% of 186 

the electrons transferred to NTO. For the second pair of reactors containing SRBRED, the 187 

retrieved SRBRED was labeled "ESC-not-recharged". The procedures for the second cycle of 188 

NTO reduction were the same, where both "ESC-recharged" and "ESC-not-recharged" SRBRED 189 

were added to 125 mL of 100 µM NTO in 50 mM CAPSO buffer and allowed to react for 24 h. 190 

After the second cycle, "ESC-recharged" SRBRED was reduced again with dithionite for the third 191 

cycle. Biochar-free and SRBOX controls were included in each cycle. 192 

MC reduction in ASR. To assess the performance of biochar in synthetic stormwater, batch 193 

experiments were also carried out in ASR, which was established based on the composition of 194 

stormwater samples collected from an east coast U.S. Navy facility and consisted of 0.38 mM 195 

Na+, 0.24 mM K+, 0.09 mM NH4
+, 0.08 mM Ca2+, 0.05 mM Mg2+, 0.65 mM Cl‒, 0.15 mM SO4

2‒ 196 

and 0.02 mM NO3
‒.46 Batch experiments were performed with RogueOX or RogueRED for NTO, 197 

NQ, DNAN, and RDX in ASR at pH 6. To compare SRB and Rogue, an additional experiment 198 

with SRB (SRBOX or SRBRED) was run for NTO in ASR at pH 6 under identical conditions. The 199 

pH was controlled at 6.0±0.2 during experiment using 0.05 N HCl. The solution was sampled 200 

(0.625 mL for NTO and DNAN, 6 mL for RDX) at different times. A portion of the RDX sample 201 

(5 mL) was used for NO2
‒ analysis and the rest for RDX and transformation product 202 

measurement. After each experiment, biochar samples were subjected to solvent extraction. 203 

NTO, NQ, and daughter products were extracted with a 3:7 (v/v) mixture of acetonitrile and 204 

0.1% trifluoroacetic acid, whereas DNAN, RDX, and daughter products were extracted with an 205 

8:2 mixture of acetonitrile and 0.1% trifluoroacetic acid.47 Each biochar sample was extracted 206 

three times. Samples of MCs and daughter products from multiple extractions were combined to 207 

obtain the total recovery. 208 
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MC sorption isotherm. Experiments were performed to obtain MC sorption isotherms for 209 

RogueOX in ASR at pH 6. To obtain an isotherm, a series of duplicate amber borosilicate reactors 210 

were set up that contained ASR and an MC at different initial concentrations. The biochar doses 211 

and MC concentration ranges (Table S4) were selected based on preliminary experiments and the 212 

solubility of each MC used. Samples (0.8 mL) were collected at different incubation times and 213 

passed through 0.2-μm PTFE syringe filters for HPLC analysis. Experiments were run for up to 214 

400 h until an apparent sorption equilibrium was reached (variations in aqueous concentrations 215 

<1% per hour). pH was maintained at 6.0±0.2 using 0.05 N HCl. For comparison, we ran an 216 

additional set of batch experiments to obtain the sorption isotherm for NQ and SRBOX in 50 mM 217 

Tris buffer at pH 8.0±0.1. 218 

For each MC, the mass sorbed per gram of biochar (Cs) was plotted against the equilibrium 219 

aqueous concentration (Ceq), and the data were fitted to a Langmuir isotherm (Eq. 1) using the 220 

least-square method. 221 

                              Cs =
KLCeqCs,max

1+KLCeq
                                        [Eq. 1] 222 

where Cs (μmol/g) is sorbed MC mass per gram of biochar, Ceq is equilibrium MC concentration 223 

in water (μM), Cs,max (μmol/g) and KL (μM–1) are fitted maximum sorption capacity and sorption 224 

affinity, respectively. After each sorption experiment, biochar samples that sorbed the maximum 225 

mass of MC were subjected to solvent extractions, as described above for MC reduction 226 

experiments. 227 

Analytical methods. MCs were analyzed using an Agilent 1200 Series HPLC (Santa Clara, 228 

CA) equipped with an Agilent 1260 diode array detector. The hydrophilic analytes NTO, ATO, 229 

and NQ were separated using a Thermo Scientific (Waltham, MA) Hypercarb porous graphitic 230 

carbon column (4.6 mm×100 mm, 5 μm particle size). A mixture of acetonitrile and 0.1% 231 
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trifluoroacetic acid was used as eluent at a flow rate of 2.0 mL/min. The run time was 10 min 232 

and the temperature was 34.0 °C. NTO, ATO, and NQ were detected at 7.9, 4.3, and 5.8 min and 233 

quantified based on absorbance at 318, 210, and 260 nm, respectively. The hydrophobic analytes, 234 

including DNAN, RDX, HMX, and their daughter products, were separated using an Agilent 235 

Zorbax SB-C18 column (4.6 mm×50 mm, 3.5 μm particle size). A mixture of phosphate buffer 236 

and methanol was used as eluent at a flow rate of 1.7 mL/min. The run time was 7 min and the 237 

temperature was ambient. DNAN and RDX were detected at 4.8 and 3.4 min, respectively, and 238 

quantified based on absorbance at 214 nm. The same method was used to quantify daughter 239 

products of DNAN48 and RDX49, 50: 2-ANAN, 4-ANAN, and DAAN were measured at 4.2 min 240 

(254 nm), 3.2 min (234 nm) and 2.3 min (210 nm), respectively, and MNX, DNX, and TNX 241 

were detected at 2.9, 2.4, and 1.9 min, respectively, based on absorbance at 234 nm. Nitrite, a 242 

potential RDX reduction product,51 was measured using Hach NitriVer® 3 Nitrite Reagent 243 

(Loveland, CO) and a Vernier LabQuest 2 UV-vis spectrophotometer. 244 

 245 

Results and Discussion 246 

NTO removal by SRB. Figure 1 shows NTO removal by SRBOX and SRBRED at pH 6, 8, 247 

and 10 and the mass balance at the end of each experiment. SRBOX adsorbed NTO in small 248 

amounts which were largely recovered by extraction. NTO sorption decreased with increasing 249 

pH, with 80%, 93% and 99% of the initial mass remaining in solution at equilibrium at pH 6, 8, 250 

and 10, respectively (solid blue bars in Figure 1(d)). As NTO is anionic (pKa 3.76)22 at all three 251 

pH values, the decreasing sorption (24, 10, and 2 µmol/g, respectively) was most likely due to 252 

increasingly negative surface charge of SRB with pH.52 Extraction of SRBOX from pH 6 and 8 253 

reactors with CAPSO buffer yielded mass balances of 94% and 101%, respectively. 254 
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In contrast, significantly more NTO was removed from solution by SRBRED, and ATO was 255 

produced concomitantly, indicating NTO was reduced to ATO by SRBRED, as shown in Eq. 2. 256 

Reduction of NTO to ATO was rapid in the first 24 h and continued at decreasing rates for up to 257 

600 h. Note that Figure 1(a)–(c) are semi-log plots and therefore the changing slopes represent 258 

decreasing pseudo-first-order rate constants. The decreasing NTO reduction rate constants could 259 

be due to one of two reasons (or both). First, it has been shown that a large portion of the ESC 260 

resides in the interior of SRB particles,34 and the rate of access is limited by pore diffusion, 261 

which is approximately two orders of magnitude slower than diffusion in the bulk solution. 262 

Second, the redox-active functional groups (or ESC) of biochar are distributed over a range of 263 

reduction potentials34, 53 and hence would react with NTO at a spectrum of rate constants. The 264 

decreasing NTO reduction rate over time likely reflects a combination of slow diffusion through 265 

tortuous channels to access reactive ESC residing in deep pores in biochar interior, and slow 266 

reaction with functional groups of increasing reduction potentials (i.e., decreasing reactivities). 267 

 + 7H+ + 6e− →  (3.76<pH<8.71) 268 

 + 6H+ + 6e− →  (pH>8.71)           [Eq. 2] 269 

The combined aqueous NTO and ATO masses were about 80% at pH 6 and 8 and virtually 270 

100% at pH 10. This suggests that, in contrast to NTO, ATO was sorbed to a similar extent at pH 271 

6 and 8 but negligibly at pH 10. This was independently confirmed, as shown in Figure S2. As 272 

the pKa of ATO had not been reported, we performed a titration (Section S2) and determined the 273 

pKa of ATO to be 8.71 (Figure S1). This is in agreement with the pH effect on ATO sorption, as 274 

ATO would be predominantly neutral at pH 6 and 8 and negatively charged at pH 10, where 275 
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sorption would be hindered by electrostatic repulsion between negatively charged ATO and 276 

biochar surface (pHzpc = 2–352). 277 

Because complete mass balance was achieved at pH 10 based on aqueous NTO and ATO 278 

(dotted line in Figure 1(c)), all NTO removal by SRBRED was attributed to reduction. This also 279 

confirms that no alkaline hydrolysis of NTO or ATO occurred at pH 10 over 600 h. Following 280 

extraction, the mass balances for all SRBRED reactors were between 91% and 100% (Figure 281 

1(d)). The remaining sorbed mass was likely sorbed through interactions that could not be 282 

reversed by pH increase, such as the π−π donor-acceptor interactions21 between graphitic regions 283 

of SRB and the aromatic NTO– anion23. 284 

 285 

  286 

  287 

Figure 1. Aqueous concentration (Caq) of NTO and ATO over time with 0.80 g/L of SRBOX or 288 

SRBRED at (a) pH 6 (50 mM MES) (b) pH 8 (50 mM Tris), and (c) pH 10 (50 mM CAPSO), and 289 

(d) mass balance at the end of experiment. The Y axis in panels (a)–(c) shows the natural 290 
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logarithm of Caq of NTO or ATO relative to the initial NTO concentration (Caq0(NTO)=110 µM). 291 

The total mass is based on blank (without SRB). NTOaq and ATOaq are the final masses in the 292 

aqueous phase, and NTOs and ATOs the sorbed masses extracted from solid. 293 

 294 

ESC available for NTO reduction. Figure 2(a and b) shows aqueous NTO removal and ATO 295 

formation with 0, 0.40, and 0.80 g/L of SRBOX or SRBRED at pH 10. NTO removal and ATO 296 

formation were observed with SRBRED, but not SRBOX. When the SRBRED mass increased from 297 

0.40 to 0.80 g/L, the amounts of NTO removed and ATO produced both doubled (Figure 2(c)), 298 

indicating the quantity of electrons per gram of SRBRED available for NTO reduction within 600 299 

h, that is, the fraction of SRB's ESC that was accessible to and of sufficiently low reduction 300 

potential to reduce NTO, was constant. Given the fact that 6 electrons per molecule are required 301 

to convert NTO to ATO (Eq. 2), the portion of ESC that was available for NTO reduction at pH 302 

10 was 499 and 503 µmol e–/g SRB, respectively, based on the amounts of NTO reduced 303 

(83.2±0.8 µmol/g) and ATO formed (83.9±1.6 µmol/g). At pH 6 and 8, the total amounts of 304 

ATO formed with 0.80 g/L of SRBRED were 100±7 and 82±8 µmol/g (Table S5), corresponding 305 

to 600 and 492 µmol e–/g, respectively, as shown in Figure 3 (red bars). 306 

 307 
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  308 

 309 

Figure 2. (a) Aqueous concentration (Caq) of NTO and ATO over time with 0.80 g/L of SRBOX 310 

or SRBRED at pH 10. (b) Caq of NTO and ATO over time with 0.40 g/L of SRBOX or SRBRED at 311 

pH 10. (c) Concentrations of ATO produced and NTO removed by SRBRED. 312 

 313 

Although the reduction potential distribution of biochar's ESC has not been fully delineated, it 314 

appears to cover a broad range of potential.34 Because one gram of SRBOX can store up to 4.0 315 

mmol of e− with dithionite as a reductant (EH = –0.43 V vs. SHE at pH 6.4),34, 54 the result above 316 

suggests that only 500–600 µmol/g of the stored electrons in SRBRED, or 12–15% of SRB's ESC, 317 

had sufficiently low reduction potential to reduce NTO. An effort to establish an electron balance 318 

for NTO reduction by SRBRED using DO as an oxidizing agent (EH = +0.80 V vs. SHE at pH 7) 319 

was hindered by the volatile nature of DO. Therefore, ferricyanide (EH = +0.43 V vs. SHE at pH 320 

7) was used instead to retrieve electrons from SRBRED before and after reaction with NTO.55 If 321 

all the electrons accessible to and reactive toward NTO could also reduce ferricyanide, the 322 

amount of electrons remaining in used SRBRED at the end of an NTO reduction experiment 323 
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would be the difference between all retrievable electrons from unused fresh SRBRED and the 324 

electrons consumed by NTO: 325 

e− retrieved from NTO-exposed SRBRED 326 

= (e− retrieved from fresh SRBRED) – (e− consumed for NTO reduction)  [Eq.3] 327 

The data in Figure 3 confirm this relationship and show the ESC of SRB that is reactive 328 

towards NTO was 26–38% of that reactive towards ferricyanide, suggesting NTO is significantly 329 

more difficult to reduce than ferricyanide. 330 

The ESC retrieved by ferricyanide increased notably from 1591 µmol/g to 1899 µmol/g 331 

when pH increased from 6 to 8. Since the reduction potential of ferricyanide is pH-independent, 332 

this result suggests that the functional groups that constitute ESC have acid-base properties and 333 

deprotonate between pH 6 and 8. To illustrate this pH effect, we use 9,10-anthrahydroquinone-334 

2,6-disulfonate (AH2QDS, pKa = 7.6) as a hypothetical hydroquinone in SRB to show (Section 335 

S4 and Figure S3) that the thermodynamic driving force for the oxidation of AH2QDS by 336 

ferricyanide is lower at pH 6 (when the hydroquinone is fully protonated) than at pH 8 and 10 337 

(when the hydroquinone is singly deprotonated). Hence, biochar's ESC is a function of pH, even 338 

when measured using the same reductant and oxidant (e.g., dithionite and ferricyanide), and pH 339 

should be specified when ESC is reported. 340 

 341 
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  342 

Figure 3. Electron balance for NTO reduction by SRBRED. Electrons of fresh SRBRED consumed 343 

by NTO was calculated based on ATO formation. 344 

 345 

Rechargeability of ESC for NTO reduction. The ESC of biochar has been shown to be reversible 346 

over multiple oxidation-reduction cycles.34, 35 This suggests that, as a rechargeable electron 347 

storage medium, biochar should be able to reduce contaminants repeatedly through recharging. 348 

This is demonstrated in Figure 4. Consistent with our earlier results, removal of aqueous NTO by 349 

SRBOX was negligible at pH 10 (which was chosen to minimize sorption of NTO and ATO). In 350 

contrast, NTO was transformed to ATO stoichiometrically by SRBRED. For the first 24-h cycle, 351 

the NTO removed from solution by SRBRED was ca. 32 µM (corresponding to ca. 38 µmol/g 352 

SRBRED, Figure S4), in good agreement with the data in Figure 1(c). The used SRBRED ("ESC-353 

not-recharged") recovered from the first cycle was unable to reduce NTO to any measurable 354 

extent upon transfer to a fresh NTO solution, suggesting the most reactive electrons had been 355 

exhausted. When the used SRBRED was recharged with dithionite ("ESC-recharged"), NTO was 356 

reduced to ATO in comparable quantities to those in the first cycle (Figure S4). Stoichiometric 357 
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conversion of NTO to ATO was also observed in the third cycle, albeit in a slightly lower 358 

quantity (32 µmol/g). This indicates the fraction of the ESC that had sufficiently low redox 359 

potentials (and thus sufficiently high reactivity) to reduce NTO could be recharged repeatedly. 360 

The electrons in the ESC that could reduce NTO within 24 h in the second and third cycles were 361 

101% and 85% that in the first cycle, respectively, demonstrating high reversibility of the ESC of 362 

SRB for NTO transformation. Therefore, if placed in a sufficiently reducing environment, such 363 

as a stormwater treatment or groundwater (bio)remediation system, biochar may be repeatedly 364 

recharged, either chemically34 or microbially31, 43, and continuously degrade contaminants such 365 

as NTO and other munitions compounds (shown below). 366 

Much research to date on the fate and treatment of NTO has focused on sorption56-58 and 367 

biodegradation.59-61 Because ATO can be readily mineralized to innocuous products such as CO2, 368 

NH4
+, and N2,

62 reduction to ATO may be a first step to achieve complete NTO mineralization. 369 

Recent studies further showed that NTO can be abiotically reduced to ATO by geo-constituents 370 

including the hematite-Fe2+ redox couple24, FeS minerals63, hydroquinones and humic acids64. 371 

Because ESC is a universal property of plant-based biochars,35 our results suggest that pyrogenic 372 

carbon, another redox-active geo-constituent that is ubiquitous in soils and sediments,65, 66 may 373 

also mediate the abiotic reduction of NTO through the same mechanism. Our result therefore has 374 

broader implications for the roles of black carbon in controlling the fate of MCs in subsurface 375 

environments as well as in engineered systems. 376 

 377 
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 378 

Figure 4. Rechargeability of biochar ESC for repeated NTO reduction. Aqueous concentrations 379 

(Caq) of NTO and ATO are shown as a function of time with 0.80 g/L of SRBOX or SRBRED at 380 

pH 10. After each cycle, NTO solution was replaced and, for "ESC-recharged", the recovered 381 

SRBRED was recharged with dithionite for the next reaction cycle (↓). The error bars for the 382 

SRBRED data in the first cycle represent one standard deviation from four replicates. 383 

 384 

MC sorption by biochar. A goal of this study was to evaluate the potential utility of biochar for 385 

removing MCs in treatment systems. To that end, we evaluated removal of NTO, NQ, DNAN, 386 

and RDX by biochar through two mechanisms, i.e., sorption and abiotic reduction. Unlike NTO, 387 

which is negatively charged under circumneutral conditions, NQ, DNAN, and RDX are neutral 388 

and less water-soluble, which suggests that sorption may play a greater role in their removal by 389 

biochar. Hence, we first characterized the sorption of these MCs to biochar before investigating 390 

their potential reductive transformation. Rogue, a commercial wood-derived biochar with high 391 

BET surface area and ESC, was used to assess its sorption and reduction capacities for MCs in 392 

ASR at pH 6. As shown in Figure S5, all four MCs were removed rapidly from solution as soon 393 
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as oxidized Rogue (RogueOX) was added. Removal subsequently slowed but continued for up to 394 

340 h until an apparent equilibrium was reached. 395 

The equilibrium concentration of sorbed and aqueous MCs from Figure S5 were used to 396 

construct sorption isotherms. The data for each MC were fitted to a Langmuir isotherm, as 397 

shown in Figure 5 and Table 1. The maximum sorption capacities (Cs, max) of Rogue for NTO, 398 

NQ, DNAN, and RDX were 154, 388, 476, and 213 µmol/g in ASR at pH 6, corresponding to 399 

2.0, 4.0, 9.4, and 4.7% of the biochar mass, respectively. We recovered 83-88% of the removed 400 

MC mass by solvent extraction (Table S6) but did not detect any of the reduction intermediates 401 

or products (see below) throughout incubations, suggesting all MCs were removed by RogueOX 402 

predominantly or exclusively through sorption. 403 

The Cs, max and KL values, representing sorption capacity and affinity of MCs for RogueOX, 404 

respectively, were highest for DNAN. This was expected based on its high KOW and KOC values 405 

(Table 1) and the strong π‒π interactions resulting from its electron-withdrawing nitro groups. 406 

Despite the low solubility of RDX, the non-aromatic structure may have contributed to the 407 

considerably lower Cs,max compared to DNAN.67, 68 Although NQ has high solubility and the 408 

lowest molecular weight, the Cs,max for NQ was twice that for NTO on a mass basis, suggesting 409 

the charge of NTO hindered its sorption. Overall, Rogue showed significant sorption capacities 410 

for MCs, especially for neutral and aromatic MCs such as DNAN. When NQ sorption to SRB 411 

and Rogue was compared (Section S5, Figure S7(b)), Cs,max for SRB was 98 µmol/g (1.0% of 412 

SRB mass), or one-fourth of the Cs,max for Rogue. This shows that Rogue exhibits a greater 413 

sorption capacity for MCs than SRB, presumably due to its higher BET surface area (Table S2). 414 

 415 
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  416 

  417 

Figure 5. MC sorption to RogueOX in ASR at pH 6 and the fitted Langmuir isotherms. (a) NTO 418 

(b) NQ (c) DNAN (d) RDX 419 

 420 

MC reduction by biochar. The reactivity of biochar toward DNAN, RDX, and NQ was assessed 421 

by comparing MC removal by RogueOX (sorption only) and RogueRED (sorption and reduction). 422 

NQ was removed from solution at similar rates and to the same extent with SRBOX and SRBRED 423 

(Figure S8), suggesting NQ was removed through sorption to both oxidized and reduced SRB 424 

and was not reduced by SRBRED. The similar removal also suggests that the nature and density of 425 

sorption sites for NQ were not measurably altered by dithionite reduction. NQ has been reported 426 

to undergo reduction with bimetallic particles69, but it does not appear to react with reduced 427 

black carbon. Consistent with this result, a recent study showed that NQ was inert toward 428 
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carbonaceous reductants such as dithionite-reduced hydroquinones and humic acids.70 Hence, 429 

abiotic reduction by carbonaceous reductants may not be an important fate mechanism for NQ 430 

even under highly reducing conditions. 431 

In contrast to NQ, NTO, DNAN, and RDX were all reducible by reduced biochar. As 432 

shown in Figure 6(a), reduction of NTO by SRBRED in ASR at pH 6 was in good agreement with 433 

that in MES buffer (Figure 1(a)), suggesting that the solution matrix did not influence the 434 

reactivity of the biochar. Under the same conditions, NTO was similarly reduced to ATO by 435 

RogueRED, indicating the reactivity of reduced biochar toward NTO is not specific to SRB. 436 

Interestingly, RogueRED and SRBRED converted comparable amounts of NTO to ATO (91 and 94 437 

μmol/g, respectively, Table 2). This suggests that the fraction of Rogue ESC reactive toward 438 

NTO was about 564 µmol/g, approximately the same as that for SRB (546 µmol/g), despite the 439 

higher ESC of Rogue. Note that the amount of NTO reduced per gram of SRB or Rogue depends 440 

on not the total ESC, but the fraction of ESC that has sufficiently low EH (i.e., contains 441 

sufficiently reducing electrons) to degrade NTO. Without knowing the redox potential 442 

distributions (i.e., the EH profiles) of SRB and Rogue, it is not possible to compare the biochars' 443 

capacities to degrade NTO. 444 

RogueOX removed 518 µmol/g of DNAN and 232 µmol/g of RDX at the end of experiment 445 

(Table 2), consistent with the fitted Cs,max values of 476 and 213 µmol/g, respectively (Table 1). 446 

In comparison, RogueRED removed additional 112 µmol/g of DNAN and 100 µmol/g of RDX, 447 

suggesting these MCs were not only sorbed but chemically reduced by RogueRED. This was 448 

confirmed through identification of reduced products of DNAN and RDX. Unlike NTO, 449 

however, DNAN and RDX sorbed more strongly to Rogue, and the sorbed molecules might not 450 
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be readily available for reduction. Therefore, only relatively small fractions of the DNAN and 451 

RDX removed from water was recovered as reduced products. 452 

Abiotic reduction of DNAN by RogueRED was confirmed by the detection of 66 μmol/g of 453 

2ANAN and a trace quantity (<2 μmol/g) of 4ANAN in the aqueous and solid phases combined. 454 

2ANAN is also the major intermediate product of DNAN during chemical63, 71 and microbial72 455 

reduction, because the ability of the methoxy group to be hydrated by water molecules helps to 456 

better solvate the ortho nitro group and enable it to bear a greater negative charge than the para 457 

nitro group following one electron reduction of DNAN.73 We did not observe DAAN in either 458 

the aqueous phase or the solid phase (via extraction) throughout the experiment. Additional 459 

experiments carried out under the same conditions using 2ANAN as the starting reactant further 460 

confirmed that no DAAN was produced from 2ANAN (Figure S9(a)). Based on the yields of 461 

2ANAN and 4ANAN and that 6 electrons were required to reduce DNAN to 2ANAN or 462 

4ANAN, the fraction of Rogue's ESC that was reactive toward DNAN was 402 µmol/g, 463 

approximately 30% lower than that toward NTO, suggesting NTO is more reducible than DNAN 464 

at pH 6.63 465 

In RDX reactors, small amounts of NO2
‒ (ca. 5 µM) and MNX (<1 µM) were 466 

formed with RogueRED, but not RogueOX. MNX and NO2
‒ are known RDX degradation 467 

products and, therefore, their detection supports the finding that RDX was degraded by 468 

RogueRED. Specifically, MNX and NO2
‒ were formed through reduction, since an addition 469 

of two electrons is required for MNX formation and reductive denitration of RDX to form 470 

NO2
‒ has been well-documented.51, 74 RDX degradation was further confirmed by the 471 

accumulation of NO2
‒ following repeated additions of RDX in reactors containing 472 

RogueRED, as detailed in Section S6 (Figure S10). The accumulation of NO2
‒ also suggests 473 
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that Rogue could not chemically reduce nitrite, as confirmed independently by a separate 474 

experiment using NO2
‒ as the starting reactant (Figure S9(b)). The mass recovery of RDX 475 

with RogueRED was only 64%, considerably lower than the 96% RDX mass recovery obtained 476 

with RogueOX following the same extraction procedures (Table S7). This suggests ca. 36% of the 477 

initial RDX was likely transformed by RogueRED. The incomplete mass balance with RogueRED 478 

(Figure 6(f)) also suggests that RDX may have undergone ring cleavage or other reactions. 479 

Overall, our results confirm that (1) DNAN and RDX can be chemically reduced by biochar 480 

through its ESC, and that (2) DNAN and RDX can be removed from water by biochar through 481 

concurrent sorption and reduction. 482 

 483 

  484 

       485 
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       486 

Figure 6. MC reduction by biochar in ASR at pH 6. (a) Aqueous concentration (Caq) of NTO and 487 

ATO over time with 0.80 g/L of SRB or Rogue. (b) NTO mass balance. (c) Caq of DNAN and 488 

2ANAN/4ANAN over time with 0.44 g/L of Rogue. (d) DNAN mass balance. (e) Caq of RDX 489 

and MNX/NO2
‒ over time with 0.44 g/L of Rogue. (f) RDX mass balance. "total" is the DNAN 490 

or RDX added to blank. Compound names with the subscripts "aq" and "s" represent the masses 491 

in the aqueous phase at the end of experiment (ca. 400 h) and the extracted masses from the solid 492 

phase, respectively. 493 

 494 
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Table 1. Sorption of MCs by Rogue in ASR at pH 6 495 

MC  NTO NQ DNAN RDX 

Structure  

  

  

Formulation IMX-101 

IMX-104 

IMX-101 IMX-101 

IMX-104 

IMX-104 

Physical 

Properties a 

M.W. (g/mol) 130.08 104.07 198.13 222.26 

Solubility (mg/L) 166425 260075–500069 2765 605 

Log KOW 0.37-1.035 0.1075 1.645 0.81-0.875 

Log KOC 3.035 − 3.115 0.88-2.405 

Isotherm 

Parameters b 

Cs, max (µmol/g) 154 388  476 213  

Cs, max (%, w/w) 2.0 4.0 9.4 4.7 

KL (µM-1) 0.07 0.02 2.96 0.44 

 R2 0.94 0.96 0.97 0.98 

a M.W.: molecular weight, KOW, KOC: octanol-water and organic carbon-water partition coefficients, respectively. Solubility at 25 °C. 496 

b Parameters of the isotherms are obtained through Langmuir isotherm fitting, as shown in Figure 5. 497 
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Table 2. Summary of MC reduction by biochar at pH 6 498 

MC NTO NTO NTO DNAN RDX 

Biochar SRB SRB Rogue Rogue Rogue 

Background solution 50 mM MES ASR ASR ASR ASR 

Removal by RED a 
(µ

m
o

l/
g
) 

112±8 103±8 112±2 630±20 332±19 

Removal by OX b 24±0 15±2 44±6 518±5 232±20 

Δ Removal c 88±8 88±6 68±6 112±16 100±6 

Product(s) formed 100±7 d 91±6 d 94±2 d 67±7 e 14±6 f 

e‒ transferred g 600±40 546±40 564±14 402±40 − 

a RED: reduced biochar (SRBRED or RogueRED) 499 

b OX: oxidized biochar (SRBOX or RogueOX) 500 

c Δ Removal: additional MC removal by reduced biochar than oxidized biochar (Removal by RED ‒ Removal by OX) 501 

d ATO formed 502 

e 2ANAN and 4ANAN formed 503 

f MNX and NO2
– formed 504 

g e‒ transferred (µmol e‒/g) =Product(s) formed (µmol/g) × 6 (mol e‒/mol product)  505 
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Conclusion 506 

To the best of our knowledge, this is the first study to demonstrate the ability and capacity 507 

of biochar to reductively degrade organic pollutants through its ESC. This degradative capacity 508 

can be regenerated in situ through chemical or microbial reduction31 and utilized repeatedly for 509 

pollution mitigation. Electrons stored in wood-derived biochar could reduce NTO to ATO 510 

stoichiometrically at pH 6−10. The fraction of biochar ESC reactive toward NTO was 511 

significant, ca. 500-600 µmol/g, or 26-38% of the ESC measured with ferricyanide, and 12-15% 512 

of that measured with DO. In addition to NTO, biochar was able to reduce DNAN and RDX as 513 

well as adsorb these MCs. Taken together, these results suggest biochar may serve as both a 514 

sorbent and regenerable reactive medium to support simultaneous removal and degradation of 515 

MCs and potentially other contaminants. 516 

This study supports further investigation and development of biochar-based remediation 517 

strategies for military facilities. In particular, the ESC and surface area of biochar may be useful 518 

properties for selecting char materials for field applications. This study also offers insights into 519 

how pyrogenic black carbons, such as those produced globally from wildfires and deforestation, 520 

may represent enormous electron reservoirs and sorbents that influence chemical transformation 521 

and transport in the environment. The role of pyrogenic carbons in contaminant geochemistry 522 

hence warrants further investigation. 523 

 524 

Supporting Information 525 

Sections for of biochar characterization, determination of the pKa of ATO, ATO sorption, 526 

thermodynamic calculations for the redox reactions involved, NQ sorption, and nitrite production 527 

from RDX reduction; tables summarizing chemicals used, biochar properties, and experimental 528 
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conditions; tables describing MC reduction, sorption, and extraction efficiency; figures 529 

illustrating biochar ESC reversibility for NTO reduction, batch MC sorption experiments, and 530 

removal of MC reduction daughter products by biochar. 531 
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