Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
m (In Situ Chemical Reduction (ISCR))
(Field Demonstrations)
 
(484 intermediate revisions by the same user not shown)
Line 1: Line 1:
==1,2,3-Trichloropropane (TCP)==
+
==PFAS Treatment by Anion Exchange==  
[[Wikipedia: 1,2,3-Trichloropropane | 1,2,3-Trichloropropane (TCP)]] is a chlorinated volatile organic compound (CVOC) that has been used in chemical production processes, in agriculture, and as a solvent, resulting in point and non-point source contamination of soil and groundwater.  TCP is mobile and highly persistent in soil and groundwater. TCP is not currently regulated at the national level in the United States, but [[Wikipedia: Maximum contaminant level | maximum contaminant levels (MCLs)]] have been developed by some states. Current treatment methods for TCP are limited and can be cost prohibitive. However, some treatment approaches, particularly [[Chemical Reduction (In Situ - ISCR) | ''in situ'' chemical reduction (ISCR)]] with [[Wikipedia: In_situ_chemical_reduction#Zero_valent_metals_%28ZVMs%29 | zero valent zinc (ZVZ)]] and [[Bioremediation - Anaerobic | ''in situ'' bioremediation (ISB)]], have recently been shown to have potential as practical remedies for TCP contamination of groundwater.
+
 
 +
[[Wikipedia: Ion exchange | Anion exchange]] has emerged as one of the most effective and economical technologies for treatment of water contaminated by [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | per- and polyfluoroalkyl substances (PFAS)]]. Anion exchange resins (AERs) are polymer beads (0.5–1 mm diameter) incorporating cationic adsorption sites that attract anionic PFAS by a combination of electrostatic and hydrophobic mechanisms. Both regenerable and single-use resin treatment systems are being investigated, and results from pilot-scale studies show that AERs can treat much greater volumes of PFAS-contaminated water than comparable amounts of [[Wikipedia: Activated carbon | granular activated carbon (GAC)]] adsorbent media. Life cycle treatment costs and environmental impacts of anion exchange and other adsorbent technologies are highly dependent upon the treatment criteria selected by site managers to determine when media is exhausted and requires replacement or regeneration.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
*[[Bioremediation - Anaerobic | Anaerobic Bioremediation]]
+
 
*[[Chemical Reduction (In Situ - ISCR) | ''In Situ'' Chemical Reduction (ISCR)]]
+
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
*[[Chemical Oxidation (In Situ - ISCO) | ''In Situ'' Chemical Oxidation (ISCO)]]
+
*[[PFAS Sources]]
 +
*[[PFAS Transport and Fate]]
 +
*[[PFAS Ex Situ Water Treatment]]
 +
*[[Supercritical Water Oxidation (SCWO)]]
 +
*[[PFAS Treatment by Electrical Discharge Plasma]]
  
 
'''Contributor(s):'''  
 
'''Contributor(s):'''  
*[[Dr. Alexandra Salter-Blanc | Alexandra J. Salter-Blanc]]
+
 
*[[Dr. Paul Tratnyek | Paul G. Tratnyek]]
+
*Dr. Timothy J. Strathmann
*John Merrill
+
*Dr. Anderson Ellis
*Alyssa Saito
+
*Dr. Treavor H. Boyer
*Lea Kane
 
*Eric Suchomel
 
*[[Dr. Rula Deeb | Rula Deeb]]
 
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
*Prospects for Remediation of 1,2,3-Trichloropropane by Natural and Engineered Abiotic Degradation Reactions. Strategic Environmental Research and Development Program (SERDP), Project ER-1457.<ref name="Tratnyek2010">Tratnyek, P.G., Sarathy, V., Salter, A.J., Nurmi, J.T., O’Brien Johnson, G., DeVoe, T., and Lee, P., 2010. Prospects for Remediation of 1,2,3-Trichloropropane by Natural and Engineered Abiotic Degradation Reactions. Strategic Environmental Research and Development Program (SERDP), Project ER-1457. [https://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER-1457/ER-1457/(language)/eng-US  Website]&nbsp;&nbsp; [[Media: ER-1457-FR.pdf | Report.pdf]]</ref>
 
  
*Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes. Strategic Environmental Research and Development Program (SERDP), Project ER-201628.<ref name="Kane2020">Kane, L.Z., Suchomel, E.J., and Deeb, R.A., 2020. Verification Monitoring for In Situ Chemical Reduction Using Zero-Valent Zinc, A Novel Technology for Remediation of Chlorinated Alkanes. Strategic Environmental Research and Development Program (SERDP), Project ER-201628. [https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201628  Website]&nbsp;&nbsp; [[Media: ER-201628.pdf | Report.pdf]]</ref>
+
*Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review<ref name="BoyerEtAl2021a">Boyer, T.H., Fang, Y., Ellis, A., Dietz, R., Choi, Y.J., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review. Water Research, 200, Article 117244. [https://doi.org/10.1016/j.watres.2021.117244 doi: 10.1016/j.watres.2021.117244]&nbsp;&nbsp; [[Special:FilePath/BoyerEtAl2021a.pdf| Open Access Manuscript.pdf]]</ref>
 +
 
 +
*Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report<ref>Strathmann, T.J., Higgins, C.P., Boyer, T., Schaefer, C., Ellis, A., Fang, Y., del Moral, L., Dietz, R., Kassar, C., Graham, C, 2023. Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report. 285 pages. [https://serdp-estcp.org/projects/details/d3ede38b-9f24-4b22-91c9-1ad634aa5384 Project Website]&nbsp;&nbsp; [[Special:FilePath/ER18-1063.pdf| Report.pdf]]</ref>
  
 
==Introduction==
 
==Introduction==
[[File:123TCPFig1.png|thumb|left|Figure 1. Ball and stick representation of the molecular structure of TCP (Salter-Blanc and Tratnyek, unpublished)]]
+
[[File:StrathmannFig1.png | thumb |300px|Figure 1. Illustration of PFAS adsorption by anion exchange resins (AERs). Incorporation of longer alkyl group side chains on the cationic quaternary amine functional groups leads to PFAS-resin hydrophobic interactions that increase resin selectivity for PFAS over inorganic anions like Cl<sup>-</sup>.]]
1,2,3-Trichloropropane (TCP) (Figure 1) is a man-made chemical that was used in the past primarily as a solvent and extractive agent, as a paint and varnish remover, and as a cleaning and degreasing agent.<ref name="ATSDR2021"> Agency for Toxic Substances and Disease Registry (ATSDR), 2021. Toxicological Profile for 1,2,3-Trichloropropane. Free download from: [https://www.atsdr.cdc.gov/toxprofiles/tp57.pdf ATSDR]&nbsp;&nbsp; [[Media: TCP2021ATSDR.pdf | Report.pdf]]</ref>. Currently, TCP is primarily used in chemical synthesis of compounds such as [[Wikipedia: Polysulfone | polysulfone]] liquid polymers used in the aerospace and automotive industries; [[Wikipedia: Hexafluoropropylene | hexafluoropropylene]] used in the agricultural, electronic, and pharmaceutical industries; [[Wikipedia: Polysulfide | polysulfide]] polymers used as sealants in manufacturing and construction; and [[Wikipedia: 1,3-Dichloropropene | 1,3-dichloropropene]] used in agriculture as a soil fumigant. TCP may also be present in products containing these chemicals as an impurity<ref name="ATSDR2021"/><ref name="CH2M2005">CH2M HILL, 2005. Interim Guidance for Investigating Potential 1,2,3-Trichloropropane Sources in San Gabriel Valley Area 3. [[Media: INTERIM_GUIDANCE_FOR_INVESTIGATING_POTENTIAL_1%2C2%2C3-TRICHLOROPROPANE_SOURCES.pdf | Report.pdf]]&nbsp;&nbsp;  [https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0902093  Website]</ref>. For example, the 1,2-dichlropropane/1,3-dichloropropene soil fumigant mixture (trade name D-D), which is no longer sold in the United States, contained TCP as an impurity and has been linked to TCP contamination in groundwater<ref name="OkiGiambelluca1987">Oki, D.S. and Giambelluca, T.W., 1987. DBCP, EDB, and TCP Contamination of Ground Water in Hawaii. Groundwater, 25(6), pp. 693-702.  [https://doi.org/10.1111/j.1745-6584.1987.tb02210.x DOI: 10.1111/j.1745-6584.1987.tb02210.x]</ref><ref name="CH2M2005"/>. Soil fumigants currently in use which are composed primarily of 1,3-dichloropropene may also contain TCP as an impurity, for instance Telone II has been reported to contain up to 0.17 percent TCP by weight<ref name="Kielhorn2003">Kielhorn, J., Könnecker, G., Pohlenz-Michel, C., Schmidt, S. and Mangelsdorf, I., 2003. Concise International Chemical Assessment Document 56: 1,2,3-Trichloropropane. World Health Organization, Geneva.  [http://www.who.int/ipcs/publications/cicad/en/cicad56.pdf Website]&nbsp;&nbsp; [[Media: WHOcicad56TCP.pdf | Report.pdf]]</ref>.
 
 
 
TCP contamination is problematic because it is “reasonably anticipated to be a human carcinogen” based on evidence of carcinogenicity to animals<ref name="NTP2016"> National Toxicology Program, 2016. Report on Carcinogens, 14th ed. U.S. Department of Health and Human Services, Public Health Service. Free download from: [https://ntp.niehs.nih.gov/ntp/roc/content/profiles/trichloropropane.pdf  NIH]&nbsp;&nbsp; [[Media: NTP2016trichloropropane.pdf | Report.pdf]]</ref>. Toxicity to humans appears to be high relative to other chlorinated solvents<ref name="Kielhorn2003"/>, suggesting that even low-level exposure to TCP could pose a significant human health risk.
 
 
 
==Environmental Fate==
 
TCP’s fate in the environment is governed by its physical and chemical properties (Table 1). TCP does not adsorb strongly to soil, making it likely to leach into groundwater and exhibit high mobility. In addition, TCP is moderately volatile and can partition from surface water and moist soil into the atmosphere. Because TCP is only slightly soluble and denser than water, it can form a [[Wikipedia: Dense non-aqueous phase liquid | dense non-aqueous phase liquid (DNAPL)]] as observed at the Tyson’s Dump Superfund Site<ref name="USEPA2019"> United States Environmental Protection Agency (USEPA), 2019. Fifth Five-year Review Report, Tyson’s Dump Superfund Site, Upper Merion Township, Montgomery County, Pennsylvania. Free download from: [https://semspub.epa.gov/work/03/2282817.pdf USEPA]&nbsp;&nbsp; [[Media: USEPA2019.pdf | Report.pdf]]</ref>. TCP is generally resistant to aerobic biodegradation, hydrolysis, oxidation, and reduction under naturally occurring conditions making it persistent in the environment<ref name="Tratnyek2010"/>.
 
 
 
{| class="wikitable" style="float:right; margin-left:10px;text-align:center;"
 
|+Table 1.  Physical and chemical properties of TCP<ref name="USEPA2017">United States Environmental Protection Agency (USEPA), 2017. Technical Fact Sheet—1,2,3-Trichloropropane (TCP). EPA Project 505-F-17-007. 6 pp.  Free download from: [https://www.epa.gov/sites/production/files/2017-10/documents/ffrrofactsheet_contaminants_tcp_9-15-17_508.pdf  USEPA]&nbsp;&nbsp; [[Media: epa_tcp_2017.pdf | Report.pdf]]</ref>
 
|-
 
!Property
 
!Value
 
|-
 
| Chemical Abstracts Service (CAS) Number || 96-18-4
 
|-
 
| Physical Description</br>(at room temperature) || Colorless to straw-colored liquid
 
|-
 
| Molecular weight  (g/mol) || 147.43
 
|-
 
| Water solubility at 25°C  (mg/L)|| 1,750 (slightly soluble)
 
|-
 
| Melting point  (°C)|| -14.7
 
|-
 
| Boiling point  (°C) || 156.8
 
|-
 
| Vapor pressure at 25°C  (mm Hg) || 3.10 to 3.69
 
|-
 
| Density at 20°C (g/cm<sup>3</sup>) || 1.3889
 
|-
 
| Octanol-water partition coefficient</br>(log''K<sub>ow</sub>'') || 1.98 to 2.27</br>(temperature dependent)
 
|-
 
| Organic carbon-water partition coefficient</br>(log''K<sub>oc</sub>'') || 1.70 to 1.99</br>(temperature dependent)
 
|-
 
| Henry’s Law constant at 25°C</br>(atm-m<sup>3</sup>/mol) || 3.17x10<sup>-4</sup><ref name="ATSDR2021"/> to 3.43x10<sup>-4</sup><ref name="LeightonCalo1981">Leighton Jr, D.T. and Calo, J.M., 1981. Distribution Coefficients of Chlorinated Hydrocarbons in Dilute Air-Water Systems for Groundwater Contamination Applications. Journal of Chemical and Engineering Data, 26(4), pp. 382-385.  [https://doi.org/10.1021/je00026a010 DOI: 10.1021/je00026a010]</ref>
 
|}
 
 
 
==Occurrence==
 
TCP has been detected in approximately 1% of public water supply and domestic well samples tested by the United States Geological Survey. More specifically, TCP was detected in 1.2% of public supply well samples collected between 1993 and 2007 by Toccalino and Hopple<ref name="ToccalinoHopple2010">Toccalino, P.L., Norman, J.E., Hitt, K.J., 2010. Quality of Source Water from Public-Supply Wells in the United States, 1993–2007. Scientific Investigations Report 2010-5024. U.S. Geological Survey. [https://doi.org/10.3133/sir20105024 DOI: 10.3133/sir20105024]  Free download from: [https://pubs.er.usgs.gov/publication/sir20105024 USGS]&nbsp;&nbsp; [[Media: Quality_of_source_water_from_public-supply_wells_in_the_United_States%2C_1993-2007.pdf | Report.pdf]]</ref> and 0.66% of domestic supply well samples collected between 1991 and 2004 by DeSimone<ref name="DeSimone2009">DeSimone, L.A., 2009. Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991–2004. U.S. Geological Survey, Scientific Investigations Report 2008–5227. 139 pp. Free download from: [http://pubs.usgs.gov/sir/2008/5227 USGS]&nbsp;&nbsp; [[Media: DeSimone2009.pdf | Report.pdf]]</ref>. TCP was detected at a higher rate in domestic supply well samples associated with agricultural land-use studies than samples associated with studies comparing primary aquifers (3.5% versus 0.2%)<ref name="DeSimone2009"/>.
 
 
 
==Regulation==
 
The United States Environmental Protection Agency (USEPA) has not established an MCL for TCP, although guidelines and health standards are in place<ref name="USEPA2017"/>. TCP was included in the Contaminant Candidate List 3<ref name="USEPA2009">United States Environmental Protection Agency (US EPA), 2009. Drinking Water Contaminant Candidate List 3-Final. Federal Register 74(194), pp. 51850–51862, Document E9-24287. [https://www.federalregister.gov/documents/2009/10/08/E9-24287/drinking-water-contaminant-candidate-list-3-final Website]&nbsp;&nbsp; [[Media: FR74-194DWCCL3.pdf | Report.pdf]]</ref> and the Unregulated Contaminant Monitoring Rule 3 (UCMR 3)<ref name="USEPA2012">United States Environmental Protection Agency (US EPA), 2012. Revisions to the Unregulated Contaminant Mentoring Regulation (UCMR 3) for Public Water Systems. Federal Register 77(85) pp. 26072-26101. [https://www.federalregister.gov/documents/2012/05/02/2012-9978/revisions-to-the-unregulated-contaminant-monitoring-regulation-ucmr-3-for-public-water-systems  Website]&nbsp;&nbsp; [[Media: FR77-85UCMR3.pdf | Report.pdf]]</ref>. The UCMR 3 specified that data be collected on TCP occurrence in public water systems over the period of January 2013 through December 2015 against a reference concentration range of 0.0004 to 0.04 μg/L<ref name="USEPA2017a">United States Environmental Protection Agency (USEPA), 2017. The Third Unregulated Contaminant Monitoring Rule (UCMR 3): Data Summary. EPA 815-S-17-001. [https://www.epa.gov/dwucmr/data-summary-third-unregulated-contaminant-monitoring-rule  Website]&nbsp;&nbsp; [[Media: ucmr3-data-summary-january-2017.pdf | Report.pdf]]</ref>. The reference concentration range was determined based on a cancer risk of 10-6 to 10-4 and derived from an oral slope factor of 30 mg/kg-day, which was determined by the EPA’s Integrated Risk Information System<ref name="IRIS2009">USEPA Integrated Risk Information System (IRIS), 2009. 1,2,3-Trichloropropane (CASRN 96-18-4). [https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=200 Website]&nbsp;&nbsp; [[Media: TCPsummaryIRIS.pdf | Summary.pdf]]</ref>. Of 36,848 samples collected during UCMR 3, 0.67% exceeded the minimum reporting level of 0.03 µg/L. 1.4% of public water systems had at least one detection over the minimum reporting level, corresponding to 2.5% of the population<ref name="USEPA2017a"/>. While these occurrence percentages are relatively low, the minimum reporting level of 0.03 µg/L is more than 75 times the USEPA-calculated Health Reference Level of 0.0004 µg/L. Because of this, TCP may occur in public water systems at concentrations that exceed the Health Reference Level but are below the minimum reporting level used during UCMR 3 data collection. These analytical limitations and lack of lower-level occurrence data have prevented the USEPA from making a preliminary regulatory determination for TCP<ref name="USEPA2021">USEPA, 2021. Announcement of Final Regulatory Determinations for Contaminants on the Fourth Drinking Water Contaminant Candidate List. Free download from: [https://www.epa.gov/sites/default/files/2021-01/documents/10019.70.ow_ccl_reg_det_4.final_web.pdf USEPA]&nbsp;&nbsp; [[Media: CCL4.pdf | Report.pdf]]</ref>.
 
 
 
Some US states have established their own standards including Hawaii which has established an MCL of 0.6 μg/L<ref name="HDOH2013">Hawaii Department of Health, 2013. Amendment and Compilation of Chapter 11-20 Hawaii Administrative Rules. Free download from: [http://health.hawaii.gov/sdwb/files/2016/06/combodOPPPD.pdf Hawaii Department of Health]&nbsp;&nbsp; [[Media: Amendment_and_Compilation_of_Chapter_11-20_Hawaii_Administrative_Rules.pdf | Report.pdf]]</ref>. California has established an MCL of 0.005 μg/L<ref name="CCR2021">California Code of Regulations, 2021. Section 64444 Maximum Contaminant Levels – Organic Chemicals (22 CA ADC § 64444). [https://govt.westlaw.com/calregs/Document/IA7B3800D18654ABD9E2D24A445A66CB9 Website]</ref>,  a notification level of 0.005 μg/L, and a public health goal of 0.0007 μg/L<ref name="OEHHA2009">Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, 2009. Final Public Health Goal for 1,2,3-Trichloropropane in Drinking Water. [https://oehha.ca.gov/water/public-health-goal/final-public-health-goal-123-trichloropropane-drinking-water Website]</ref>, and New Jersey has established an MCL of 0.03 μg/L<ref name="NJAC2020">New Jersey Administrative Code 7:10, 2020. Safe Drinking Water Act Rules. Free download from: [https://www.nj.gov/dep/rules/rules/njac7_10.pdf  New Jersey Department of Environmental Protection]</ref>.
 
 
 
==Transformation Processes==
 
[[File:123TCPFig2.png|thumb|600px|left|Figure 2. Figure 2. Summary of anticipated primary reaction pathways for degradation of TCP. Oxidation, hydrolysis, and hydrogenolysis are represented by the horizontal arrows. Elimination (dehydrochlorination) and reductive elimination are shown with vertical arrows. [O] represents oxygenation (by oxidation or hydrolysis), [H] represents reduction. Gray indicates products that appear to be of lesser significance<ref name="Tratnyek2010"/>.]]
 
Potential TCP degradation pathways include hydrolysis, oxidation, and reduction (Figure 2). These pathways are expected to be similar overall for abiotic and biotic reactions<ref name="Sarathy2010">Sarathy, V., Salter, A.J., Nurmi, J.T., O’Brien Johnson, G., Johnson, R.L., and Tratnyek, P.G., 2010. Degradation of 1, 2, 3-Trichloropropane (TCP): Hydrolysis, Elimination, and Reduction by Iron and Zinc. Environmental Science and Technology, 44(2), pp.787-793.  [https://doi.org/10.1021/es902595j DOI: 10.1021/es902595j]</ref>, but the rates of the reactions (and their resulting significance for remediation) depend on natural and engineered conditions.
 
 
 
The rate of hydrolysis of TCP is negligible under typical ambient pH and temperature conditions but is favorable at high pH and/or temperature<ref name="Tratnyek2010"/><ref name="Sarathy2010"/>. For example, ammonia gas can be used to raise soil pH and stimulate alkaline hydrolysis of chlorinated propanes including TCP<ref name="Medina2016">Medina, V.F., Waisner, S.A., Griggs, C.S., Coyle, C., and Maxwell, M., 2016. Laboratory-Scale Demonstration Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives). US Army Engineer Research and Development Center, Environmental Laboratory (ERDC/EL), Report TR-16-10. [http://hdl.handle.net/11681/20312 Website]&nbsp;&nbsp; [[Media: ERDC_EL_TR_16_10.pdf  | Report.pdf]]</ref>. [[Thermal Conduction Heating (TCH)]] may also produce favorable conditions for TCP hydrolysis<ref name="Tratnyek2010"/><ref name="Sarathy2010"/>.
 
 
 
==Treatment Approaches==
 
Compared to more frequently encountered CVOCs such as [[Wikipedia: Trichloroethylene | trichloroethene (TCE)]] and [[Wikipedia: Tetrachloroethylene | tetrachloroethene (PCE)]], TCP is relatively recalcitrant<ref name="Merrill2019">Merrill, J.P., Suchomel, E.J., Varadhan, S., Asher, M., Kane, L.Z., Hawley, E.L., and Deeb, R.A., 2019. Development and Validation of Technologies for Remediation of 1,2,3-Trichloropropane in Groundwater. Current Pollution Reports, 5(4), pp. 228–237.  [https://doi.org/10.1007/s40726-019-00122-7 | DOI: 10.1007/s40726-019-00122-7]</ref><ref name="Tratnyek2010"/>. TCP is generally resistant to hydrolysis, bioremediation, oxidation, and reduction under natural conditions<ref name="Tratnyek2010"/>.  The moderate volatility of TCP makes air stripping, air sparging, and soil vapor extraction (SVE) less effective compared to other VOCs<ref name="Merrill2019"/>. Despite these challenges, both ''ex situ'' and ''in situ'' treatment technologies exist. ''Ex situ'' treatment processes are relatively well established and understood but can be cost prohibitive. ''In situ'' treatment methods are comparatively limited and less-well developed, though promising field-scale demonstrations of some ''in situ'' treatment technologies have been conducted.
 
 
 
===''Ex Situ'' Treatment===
 
The most common ''ex situ'' treatment technology for groundwater contaminated with TCP is groundwater extraction and treatment<ref name="SaminJanssen2012">Samin, G. and Janssen, D.B., 2012. Transformation and biodegradation of 1,2,3-trichloropropane (TCP). Environmental Science and Pollution Research International, 19(8), pp. 3067-3078. [https://doi.org/10.1007/s11356-012-0859-3 DOI: 10.1007/s11356-012-0859-3]&nbsp;&nbsp; [[Media:  SaminJanssen2012.pdf | Report.pdf]]</ref>. Extraction of TCP is generally effective given its relatively high solubility in water and low degree of partitioning to soil. After extraction, TCP is typically removed by adsorption to granular activated carbon (GAC)<ref name="Merrill2019"/><ref name="CalEPA2017">California Environmental Protection Agency, 2017. Groundwater Information Sheet, 1,2,3-Trichloropropane (TCP). State Water Resources Control Board, Division of Water Quality, Groundwater Ambient Monitoring and Assessment (GAMA) Program, 8 pp. Free download from: [http://www.waterboards.ca.gov/gama/docs/coc_tcp123.pdf California Waterboards]&nbsp;&nbsp; [[Media: CalEPA2017tcp123.pdf | Report.pdf]]</ref>.
 
 
 
TCP contamination in drinking water sources is typically treated using granular activated carbon (GAC)<ref name="Hooker2012">Hooker, E.P., Fulcher, K.G. and Gibb, H.J., 2012. Report to the Hawaii Department of Health, Safe Drinking Water Branch, Regarding the Human Health Risks of 1, 2, 3-Trichloropropane in Tap Water. [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.269.2485&rep=rep1&type=pdf Free Download]&nbsp;&nbsp; [[Media: Hooker2012.pdf | Report.pdf]]</ref>.
 
 
 
In California, GAC is considered the best available technology (BAT) for treating TCP, and as of 2017 seven full-scale treatment facilities were using GAC to treat groundwater contaminated with TCP<ref name="CalEPA2017a">California Environmental Protection Agency, 2017.  Initial Statement of Reasons 1,2,3-Trichloropropane Maximum Contaminant Level Regulations. Water Resources Control Board, Title 22, California Code of Regulations (SBDDW-17-001). 36 pp.  [https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/123-tcp/sbddw17_001/isor.pdf  Free download]</ref>. Additionally, GAC has been used for over 30 years to treat 60 million gallons per day of TCP-contaminated groundwater in Hawaii<ref name="Babcock2018">Babcock Jr, R.W., Harada, B.K., Lamichhane, K.M., and Tsubota, K.T., 2018. Adsorption of 1, 2, 3-Trichloropropane (TCP) to meet a MCL of 5 ppt. Environmental Pollution, 233, 910-915. [https://doi.org/10.1016/j.envpol.2017.09.085  DOI: 10.1016/j.envpol.2017.09.085]</ref>.
 
 
 
GAC has a low to moderate adsorption capacity for TCP, which can necessitate larger treatment systems and result in higher treatment costs relative to other organic contaminants<ref name="USEPA2017"/>.  Published Freundlich adsorption isotherm parameters<ref name="SnoeyinkSummers1999">Snoeyink, V.L. and Summers, R.S, 1999. Adsorption of Organic Compounds (Chapter 13), In: Water Quality and Treatment, 5th ed., Letterman, R.D., editor.  McGraw-Hill, New York, NY. ISBN 0-07-001659-3</ref> indicate that less TCP mass is adsorbed per gram of carbon compared to other volatile organic compounds (VOCs), resulting in increased carbon usage rate and treatment cost. Recent bench-scale studies indicate that subbituminous coal-based GAC and coconut shell-based GAC are the most effective types of GAC for treatment of TCP in groundwater<ref name="Babcock2018"/><ref name="Knappe2017">Knappe, D.R.U., Ingham, R.S., Moreno-Barbosa, J.J., Sun, M., Summers, R.S., and Dougherty, T., 2017. Evaluation of Henry’s Law Constants and Freundlich Adsorption Constants for VOCs. Water Research Foundation Project 4462 Final Report. [https://www.waterrf.org/research/projects/evaluation-henrys-law -constant-and-freundlich-adsorption-constant-vocs  Website]</ref>. To develop more economical and effective treatment approaches, further treatability studies with site groundwater (e.g., rapid small-scale column tests) may be needed.
 
 
 
===''In Situ'' Treatment===
 
''In situ'' treatment of TCP to concentrations below current regulatory or advisory levels is difficult to achieve in both natural and engineered systems. However, several ''in situ'' treatment technologies have demonstrated promise for TCP remediation, including chemical reduction by zero-valent metals (ZVMs), chemical oxidation with strong oxidizers, and anaerobic bioremediation<ref name="Merrill2019"/><ref name="Tratnyek2010"/>.
 
 
 
===''In Situ'' Chemical Reduction (ISCR)===
 
Reduction of TCP under conditions relevant to natural attenuation has been observed to be negligible. Achieving significant degradation rates of TCP requires the addition of a chemical reductant to the contaminated zone<ref name="Merrill2019"/><ref name="Tratnyek2010"/>.  Under reducing environmental conditions, some ZVMs have demonstrated the ability to reduce TCP all the way to [[wikipedia:Propene | propene]]. As shown in Figure 2, the desirable pathway for reduction of TCP is the formation of [[Wikipedia: Allyl_chloride | 3-chloro-1-propene (also known as allyl chloride)]] via [[Biodegradation_-_Reductive_Processes#Dihaloelimination | dihaloelimination]], which is then rapidly reduced to propene through [[Wikipedia:Hydrogenolysis |  hydrogenolysis]] <ref name="Merrill2019"/><ref name="Tratnyek2010"/><ref name="Torralba-Sanchez2020">Torralba-Sanchez, T.L., Bylaska, E.J., Salter-Blanc, A.J., Meisenheimer, D.E., Lyon, M.A., and Tratnyek, P.G., 2020. Reduction of 1, 2, 3-trichloropropane (TCP): pathways and mechanisms from computational chemistry calculations. Environmental Science: Processes and Impacts, 22(3), 606-616. [https://doi.org/10.1039/C9EM00557A DOI: 10.1039/C9EM00557A]&nbsp;&nbsp; [[Media: Torralba-Sanchez2020.pdf | Open Access Article]]</ref>.  ZVMs including granular zero-valent iron (ZVI), nano ZVI, [[wikipedia: In_situ_chemical_reduction#Bimetallic%20materials | palladized nano ZVI]], and [[wikipedia: In_situ_chemical_reduction#Zero_valent_metals_%28ZVMs%29 | zero-valent zinc (ZVZ)]] have been evaluated by researchers<ref name="Merrill2019"/><ref name="Tratnyek2010"/>.
 
 
 
ZVI is a common reductant used for ISCR and, depending on the form used, has shown variable levels of success for TCP treatment. The Strategic Environmental Research and Development Program (SERDP) Project ER-1457 measured the TCP degradation rates for various forms of ZVI and ZVZ.  Nano-scale ZVI and palladized ZVI increased the TCP reduction rate over that of natural attenuation, but the reaction is not anticipated to be fast enough to be useful in typical remediation applications<ref name="Sarathy2010"/>.
 
 
 
Commercial-grade zerovalent zinc (ZVZ) on the other hand is a strong reductant that reduces TCP relatively quickly under a range of laboratory and field conditions to produce propene without significant accumulation of intermediates<ref name="Sarathy2010"/><ref name="Salter-BlancTratnyek2011">Salter-Blanc, A.J. and Tratnyek, P.G., 2011. Effects of Solution Chemistry on the Dechlorination of 1,2,3-Trichloropropane by Zero-Valent Zinc. Environmental Science and Technology, 45(9), pp 4073–4079. [https://doi.org/10.1021/es104081p DOI: 10.1021/es104081p]&nbsp;&nbsp; [[Media: Salter-BlancTratnyek2011.pdf | Open access article]]</ref><ref name="Salter-Blanc2012">Salter-Blanc, A.J., Suchomel, E.J., Fortuna, J.H., Nurmi, J.T., Walker, C., Krug, T., O'Hara, S., Ruiz, N., Morley, T. and Tratnyek, P.G., 2012. Evaluation of Zerovalent Zinc for Treatment of 1,2,3-Trichloropropane‐Contaminated Groundwater: Laboratory and Field Assessment. Groundwater Monitoring and Remediation, 32(4), pp.42-52. [https://doi.org/10.1111/j.1745-6592.2012.01402.x DOI: 10.1111/j.1745-6592.2012.01402.x]</ref><ref name="Merrill2019"/>. Of the ZVMs tested as part of SERDP Project ER-1457, ZVZ had the fastest degradation rates for TCP<ref name="Tratnyek2010"/>. In bench-scale studies, TCP was reduced by ZVZ to propene with 3-chloro-1-propene as the only detectable chlorinated intermediate, which was short-lived and detected only at trace concentrations<ref name="Torralba-Sanchez2020"/>.
 
  
Navy Environmental Sustainability Development to Integration (NESDI) Project 434 conducted bench-scale testing which demonstrated that commercially available ZVZ was effective for treating TCP. Additionally, this project evaluated field-scale ZVZ column treatment of groundwater impacted with TCP at Marine Corps Base Camp Pendleton (MCBCP) in Oceanside, California. This study reported reductions of TCP concentrations by up to 95% which was maintained for at least twelve weeks with influent concentrations ranging from 3.5 to 10 µg/L, without any significant secondary water quality impacts detected<ref name="Salter-Blanc2012"/>.
+
[[File:StrathmannFig2.png | thumb | 300px| Figure 2. Effect of perfluoroalkyl carbon chain length on the estimated bed volumes (BVs) to 50% breakthrough of PFCAs and PFSAs observed in a pilot study<ref name="StrathmannEtAl2020">Strathmann, T.J., Higgins, C., Deeb, R., 2020. Hydrothermal Technologies for On-Site Destruction of Site Investigation Wastes Impacted by PFAS, Final Report - Phase I. SERDP Project ER18-1501. [https://serdp-estcp.mil/projects/details/b34d6396-6b6d-44d0-a89e-6b22522e6e9c Project Website]&nbsp;&nbsp; [[Media: ER18-1501.pdf| Report.pdf]]</ref> treating PFAS-contaminated groundwater with the PFAS-selective AER (Purolite PFA694E) ]]
  
Following the column study, a 2014 pilot study at MCBCP evaluated direct injection of ZVZ with subsequent monitoring. Direct injection of ZVZ was reportedly effective for TCP treatment, with TCP reductions ranging from 90% to 99% in the injection area. Concentration reduction downgradient of the injection area ranged from 50 to 80%. TCP concentrations have continued to decrease, and reducing conditions have been maintained in the aquifer since injection, demonstrating the long-term efficacy of ZVZ for TCP reduction<ref name="Kane2020"/>.
+
Anion exchange is an adsorptive treatment technology that uses polymeric resin beads (0.5–1 mm diameter) that incorporate cationic adsorption sites to remove anionic pollutants from water<ref>SenGupta, A.K., 2017. Ion Exchange in Environmental Processes: Fundamentals, Applications and Sustainable Technology. Wiley. ISBN:9781119157397  [https://onlinelibrary.wiley.com/doi/book/10.1002/9781119421252 Wiley Online Library]</ref>. Anions (e.g., NO<sub>3</sub><sup>-</sup>) are adsorbed by an ion exchange reaction with anions that are initially bound to the adsorption sites (e.g., Cl<sup>-</sup>) during resin preparation. Many per- and polyfluoroalkyl substances (PFAS) of concern, including [[Wikipedia: Perfluorooctanoic acid | perfluorooctanoic acid (PFOA)]] and [[Wikipedia: Perfluorooctanesulfonic acid | perfluorooctane sulfonate (PFOS)]], are present in contaminated water as anionic species that can be adsorbed by anion exchange reactions<ref name="BoyerEtAl2021a" /><ref name="DixitEtAl2021">Dixit, F., Dutta, R., Barbeau, B., Berube, P., Mohseni, M., 2021. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere, 272, Article 129777. [https://doi.org/10.1016/j.chemosphere.2021.129777 doi: 10.1016/j.chemosphere.2021.129777]</ref><ref name="RahmanEtAl2014">Rahman, M.F., Peldszus, S., Anderson, W.B., 2014. Behaviour and Fate of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Drinking Water Treatment: A Review. Water Research, 50, pp. 318–340. [https://doi.org/10.1016/j.watres.2013.10.045 doi: 10.1016/j.watres.2013.10.045]</ref>.
 +
<br>
 +
<center><big>Anion Exchange Reaction:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''PFAS<sup>-</sup>'''</big>'''<sub>(aq)</sub><big>&nbsp;+&nbsp;Cl<sup>-</sup></big><sub>(resin bound)</sub><big>&nbsp;&nbsp;&rArr;&nbsp;&nbsp;PFAS<sup>-</sup></big><sub>(resin bound)</sub><big>&nbsp;+&nbsp;Cl<sup>-</sup></big><sub>(aq)</sub>'''</center>
 +
Resins most commonly applied for PFAS treatment are strong base anion exchange resins (SB-AERs) that incorporate [[Wikipedia: Quaternary ammonium cation | quaternary ammonium]] cationic functional groups with hydrocarbon side chains (R-groups) that promote PFAS adsorption by a combination of electrostatic and hydrophobic mechanisms (Figure 1)<ref name="BoyerEtAl2021a" /><ref>Fuller, Mark. Ex Situ Treatment of PFAS-Impacted Groundwater Using Ion Exchange with Regeneration; ER18-1027. [https://serdp-estcp.mil/projects/details/af660326-56e0-4d3c-b80a-1d8a2d613724 Project Website].</ref>. SB-AERs maintain cationic functional groups independent of water pH. Recently introduced ‘PFAS-selective’ AERs show >1,000,000-fold greater selectivity for some PFAS over the Cl<sup>-</sup> initially loaded onto resins<ref name="FangEtAl2021">Fang, Y., Ellis, A., Choi, Y.J., Boyer, T.H., Higgins, C.P., Schaefer, C.E., Strathmann, T.J., 2021. Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science and Technology, 55(8), pp. 5001–5011. [https://doi.org/10.1021/acs.est.1c00769 doi: 10.1021/acs.est.1c00769]</ref>. These resins also show much higher adsorption capacities for PFAS (mg PFAS adsorbed per gram of adsorbent media) than granular activated carbon (GAC) adsorbents.
  
Potential ''in situ'' applications of ZVZ include direct injection, as demonstrated by the MCBCP pilot study, and permeable reactive barriers (PRBs). Additionally, ZVZ could potentially be deployed in an ''ex situ'' flow-through reactor, but the economic feasibility of this approach would depend in part on the permeability of the aquifer and in part on the cost of the reactor volumes of ZVZ media necessary for complete treatment.
+
PFAS of concern have a wide range of structures, including [[Wikipedia: Perfluoroalkyl carboxylic acids | perfluoroalkyl carboxylic acids (PFCAs)]] and [[Wikipedia: Perfluorosulfonic acids | perfluoroalkyl sulfonic acids (PFSAs)]] of varying carbon chain length<ref>Interstate Technology Regulatory Council (ITRC), 2023. Technical Resources for Addressing Environmental Releases of Per- and Polyfluoroalkyl Substances (PFAS). [https://pfas-1.itrcweb.org/ ITRC PFAS Website]</ref>. As such, affinity for adsorption to AERs is heavily dependent upon PFAS structure<ref name="BoyerEtAl2021a" /><ref name="DixitEtAl2021" />. In general, it has been found that the extent of adsorption increases with increasing chain length, and that PFSAs adsorb more strongly than PFCAs of similar chain length (Figure 2)<ref name="FangEtAl2021" /><ref>Gagliano, E., Sgroi, M., Falciglia, P.P., Vagliasindi, F.G.A., Roccaro, P., 2020. Removal of Poly- and Perfluoroalkyl Substances (PFAS) from Water by Adsorption: Role of PFAS Chain Length, Effect of Organic Matter and Challenges in Adsorbent Regeneration. Water Research, 171, Article 115381. [https://doi.org/10.1016/j.watres.2019.115381 doi: 10.1016/j.watres.2019.115381]</ref>. The chain length-dependence supports the conclusion that PFAS-resin hydrophobic mechanisms contribute to adsorption. Adsorption of polyfluorinated structures also depends on structure and prevailing charge, with adsorption of zwitterionic species (containing both anionic and cationic groups in the same structure) to AERs being documented despite having a net neutral charge<ref name="FangEtAl2021" />.
  
===''In Situ'' Chemical Oxidation (ISCO)===
+
==Reactors for Treatment of PFAS-Contaminated Water==
Chemical oxidation of TCP with mild oxidants such as permanganate or ozone is ineffective. However, stronger oxidants (e.g. activated peroxide and persulfate) can effectively treat TCP, although the rates are slower than observed for most other organic contaminants<ref name="Tratnyek2010"/><ref name="CalEPA2017"/>. [[Wikipedia: Fenton's reagent | Fenton-like chemistry]] (i.e., Fe(II) activated hydrogen peroxide) has been shown to degrade TCP in the laboratory with half-lives ranging from 5 to 10 hours<ref name="Tratnyek2010"/>, but field-scale demonstrations of this process have not been reported. Treatment of TCP with heat-activated or base-activated persulfate is effective but secondary water quality impacts from high sulfate may be a concern at some locations.
+
[[File:StrathmannFig3.png | thumb | 300px| Figure 3. Fixed bed reactor vessels containing anion exchange resins treating PFAS-contaminated water in the City of Orange, NJ. Water flow goes through both vessels in a lead-lag configuration. Picture credit: AqueoUS  Vets.]]
 +
Anion exchange treatment of water is accomplished by pumping contaminated water through fixed bed reactors filled with AERs (Figure 3). A common configuration involves flowing water through two reactors arranged in a lead-lag configuration<ref name="WoodardEtAl2017">Woodard, S., Berry, J., Newman, B., 2017. Ion Exchange Resin for PFAS Removal and Pilot Test Comparison to GAC. Remediation, 27(3), pp. 19–27. [https://doi.org/10.1002/rem.21515 doi: 10.1002/rem.21515]</ref>. Water flows through the pore spaces in close contact with resin beads. Sufficient contact time needs to be provided, referred to as empty bed contact time (EBCT), to allow PFAS to diffuse from the water into the resin structure and adsorb to exchange sites. Typical EBCTs for AER treatment of PFAS are 2-5 min, shorter than contact times recommended for granular activated carbon (GAC) adsorbents (≥10 min)<ref name="LiuEtAl2022">Liu, C. J., Murray, C.C., Marshall, R.E., Strathmann, T.J., Bellona, C., 2022. Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater by Granular Activated Carbon and Anion Exchange Resins: A Pilot-Scale Comparative Assessment. Environmental Science: Water Research and Technology, 8(10), pp. 2245–2253. [https://doi.org/10.1039/D2EW00080F doi: 10.1039/D2EW00080F]</ref><ref>Liu, C.J., Werner, D., Bellona, C., 2019. Removal of Per- and Polyfluoroalkyl Substances (PFASs) from Contaminated Groundwater Using Granular Activated Carbon: A Pilot-Scale Study with Breakthrough Modeling. Environmental Science: Water Research and Technology, 5(11), pp. 1844–1853. [https://doi.org/10.1039/C9EW00349E doi: 10.1039/C9EW00349E]</ref>. The higher adsorption capacities and shorter EBCTs of AERs enable use of much less media and smaller vessels than GAC, reducing expected capital costs for AER treatment systems<ref name="EllisEtAl2023">Ellis, A.C., Boyer, T.H., Fang, Y., Liu, C.J., Strathmann, T.J., 2023. Life Cycle Assessment and Life Cycle Cost Analysis of Anion Exchange and Granular Activated Carbon Systems for Remediation of Groundwater Contaminated by Per- and Polyfluoroalkyl Substances (PFASs). Water Research, 243, Article 120324. [https://doi.org/10.1016/j.watres.2023.120324 doi: 10.1016/j.watres.2023.120324]</ref>.  
  
===Aerobic Bioremediation===
+
Like other adsorption media, PFAS will initially adsorb to media encountered near the inlet side of the reactor, but as ion exchange sites become saturated with PFAS, the active zone of adsorption will begin to migrate through the packed bed with increasing volume of water treated. Moreover, some PFAS with lower affinity for exchange sites (e.g., shorter-chain PFAS that are less hydrophobic) will be displaced by competition from other PFAS (e.g., longer-chain PFAS that are more hydrophobic) and move further along the bed to occupy open sites<ref name="EllisEtAl2022">Ellis, A.C., Liu, C.J., Fang, Y., Boyer, T.H., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2022. Pilot Study Comparison of Regenerable and Emerging Single-Use Anion Exchange Resins for Treatment of Groundwater Contaminated by per- and Polyfluoroalkyl Substances (PFASs). Water Research, 223, Article 119019. [https://doi.org/10.1016/j.watres.2022.119019 doi: 10.1016/j.watres.2022.119019]&nbsp;&nbsp; [[Special:FilePath/EllisEtAl2022.pdf| Open Access Manuscript]]</ref>. Eventually, PFAS will start to breakthrough into the effluent from the reactor, typically beginning with the shorter-chain compounds. The initial breakthrough of shorter-chain PFAS is similar to the behavior observed for AER treatment of inorganic contaminants.  
No naturally occurring microorganisms have been identified that degrade TCP under aerobic conditions<ref name="SaminJanssen2012"/>. Relatively slow aerobic cometabolism by the ammonia oxidizing bacterium [[Wikipedia: Nitrosomonas europaea | Nitrosomonas europaea]] and other populations has been reported<ref name="Vanelli1990">Vannelli, T., Logan, M., Arciero, D.M., and Hooper, A.B., 1990. Degradation of Halogenated Aliphatic Compounds by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea. Applied and Environmental Microbiology, 56(4), pp. 1169–1171. [https://doi.org/10.1128/aem.56.4.1169-1171.1990 DOI: 10.1128/aem.56.4.1169-1171.1990] Free download from: [https://journals.asm.org/doi/epdf/10.1128/aem.56.4.1169-1171.1990 American Society of Microbiology]&nbsp;&nbsp; [[Media: Vannelli1990.pdf | Report.pdf]]</ref><ref name="SaminJanssen2012"/>, and genetic engineering has been used to develop organisms capable of utilizing TCP as a sole carbon source under aerobic conditions<ref name="Bosma2002">Bosma, T., Damborsky, J., Stucki, G., and Janssen, D.B., 2002. Biodegradation of 1,2,3-Trichloropropane through Directed Evolution and Heterologous Expression of a Haloalkane Dehalogenase Gene. Applied and Environmental Microbiology, 68(7), pp. 3582–3587. [https://doi.org/10.1128/AEM.68.7.3582-3587.2002 DOI: 10.1128/AEM.68.7.3582-3587.2002] Free download from: [https://journals.asm.org/doi/epub/10.1128/AEM.68.7.3582-3587.2002 American Society for Microbiology]&nbsp;&nbsp; [[Media: Bosma2002.pdf | Report.pdf]]</ref><ref name="SaminJanssen2012"/><ref name="JanssenStucki2020">Janssen, D. B., and Stucki, G., 2020. Perspectives of genetically engineered microbes for groundwater bioremediation. Environmental Science: Processes and Impacts, 22(3), pp. 487-499. [https://doi.org/10.1039/C9EM00601J DOI: 10.1039/C9EM00601J] Open access article from: [https://pubs.rsc.org/en/content/articlehtml/2020/em/c9em00601j Royal Society of Chemistry]&nbsp;&nbsp; [[Media: JanssenStucki2020.pdf | Report.pdf]]</ref>.  
 
  
===Anaerobic Bioremediation===
+
Upon breakthrough, treatment is halted, and the exhausted resins are either replaced with fresh media or regenerated before continuing treatment. Most vendors are currently operating AER treatment systems for PFAS in single-use mode where virgin media is delivered to replace exhausted resins, which are transported off-site for disposal or incineration<ref name="BoyerEtAl2021a" />. As an alternative, some providers are developing regenerable AER treatment systems, where exhausted resins are regenerated on-site by desorbing PFAS from the resins using a combination of salt brine (typically ≥1 wt% NaCl) and cosolvent (typically ≥70 vol% methanol)<ref name="BoyerEtAl2021a" /><ref name="BoyerEtAl2021b">Boyer, T.H., Ellis, A., Fang, Y., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Life Cycle Environmental Impacts of Regeneration Options for Anion Exchange Resin Remediation of PFAS Impacted Water. Water Research, 207, Article 117798. [https://doi.org/10.1016/j.watres.2021.117798 doi: 10.1016/j.watres.2021.117798]&nbsp;&nbsp; [[Special:FilePath/BoyerEtAl2021b.pdf| Open Access Manuscript]]</ref><ref>Houtz, E., (projected completion 2025). Treatment of PFAS in Groundwater with Regenerable Anion Exchange Resin as a Bridge to PFAS Destruction, Project ER23-8391. [https://serdp-estcp.mil/projects/details/a12b603d-0d4a-4473-bf5b-069313a348ba/treatment-of-pfas-in-groundwater-with-regenerable-anion-exchange-resin-as-a-bridge-to-pfas-destruction Project Website].</ref>. This mode of operation allows for longer term use of resins before replacement, but requires more complex and extensive site infrastructure. Cosolvent in the resulting waste regenerant can be recycled by distillation, which reduces chemical inputs and lowers the volume of PFAS-contaminated still bottoms requiring further treatment or disposal<ref name="BoyerEtAl2021b" />. Currently, there is active research on various technologies for destruction of PFAS concentrates in AER still bottoms residuals<ref name="StrathmannEtAl2020"/><ref name="HuangEtAl2021">Huang, Q., Woodard, S., Nickleson, M., Chiang, D., Liang, S., Mora, R., 2021. Electrochemical Oxidation of Perfluoroalkyl Acids in Still Bottoms from Regeneration of Ion Exchange Resins Phase I - Final Report. SERDP Project ER18-1320. [https://serdp-estcp.mil/projects/details/ccaa70c4-b40a-4520-ba17-14db2cd98e8f Project Website]&nbsp;&nbsp; [[Special:FilePath/ER18-1320.pdf| Report.pdf]]</ref>.
Like other CVOCs, TCP has been shown to undergo biodegradation under anaerobic conditions via reductive dechlorination by [[Wikipedia:Dehalogenimonas | Dehalogenimonas (Dhg)]] species<ref name="Merrill2019"/><ref name="Yan2009">Yan, J., B.A. Rash, F.A. Rainey, and W.M. Moe, 2009. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environmental Microbiology, 11(4), pp. 833–843. [https://doi.org/10.1111/j.1462-2920.2008.01804.x DOI: 10.1111/j.1462-2920.2008.01804.x]</ref><ref name="Bowman2013">Bowman, K.S., Nobre, M.F., da Costa, M.S., Rainey, F.A., and Moe, W.M., 2013. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_4), pp. 1492-1498. [https://doi.org/10.1099/ijs.0.045054-0 DOI: 10.1099/ijs.0.045054-0]  Free access article from: [https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.045054-0?crawler=true Microbiology Society]&nbsp;&nbsp; [[Media: Bowman2013.pdf | Report.pdf]]</ref><ref name="Loffler1997">Loffler, F.E., Champine, J.E., Ritalahti, K.M., Sprague, S.J. and Tiedje, J.M., 1997. Complete Reductive Dechlorination of 1, 2-Dichloropropane by Anaerobic Bacteria. Applied and Environmental Microbiology, 63(7), pp.2870-2875. Free download from: [https://journals.asm.org/doi/pdf/10.1128/aem.63.7.2870-2875.1997 American Society for Micrebiology]&nbsp;&nbsp; [[Medeia: Loffler1997.pdf | Report.pdf]]</ref><ref name="Moe2019">Moe, W.M., Yan, J., Nobre, M.F., da Costa, M.S. and Rainey, F.A., 2009. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. International Journal of Systematic and Evolutionary Microbiology, 59(11), pp.2692-2697. [https://doi.org/10.1099/ijs.0.011502-0 DOI: 10.1099/ijs.0.011502-0] Free download from: [https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.011502-0?crawler=true Microbiology Society]&nbsp;&nbsp; [[Media: Moe2009.pdf | Report.pdf]]</ref><ref name="SaminJanssen2012"/>. However, the kinetics are slower than for other CVOCs.  Bioaugmentation cultures containing Dehalogenimonas (KB-1 Plus, SiREM) are commercially available and have been implemented for remediation of TCP-contaminated groundwater<ref name="Schmitt2017">Schmitt, M., Varadhan, S., Dworatzek, S., Webb, J. and Suchomel, E., 2017. Optimization and validation of enhanced biological reduction of 1,2,3-trichloropropane in groundwater. Remediation Journal, 28(1), pp.17-25. [https://doi.org/10.1002/rem.21539 DOI: 10.1002/rem.21539]</ref>. One laboratory study examined the effect of pH on biotransformation of TCP over a wide range of TCP concentrations (10 to 10,000 µg/L) and demonstrated that successful reduction occurred from a pH of 5 to 9, though optimal conditions were from pH 7 to 9<ref name="Schmitt2017"/>.
 
  
As with other microbial cultures capable of reductive dechlorination, coordinated amendment with a fermentable organic substrate (e.g. lactate or vegetable oil), also known as biostimulation, creates reducing conditions in the aquifer and provides a source of hydrogen which is required as the primary electron donor for reductive dechlorination.  
+
==Field Demonstrations==
 +
[[File:StrathmannFig4.png | thumb | 300px| Figure 4. Pilot treatment system comparing three AERs (2.5 min EBCT) with GAC (10 min EBCT) for treatment of a PFAS-contaminated groundwater. Picture courtesy of Charlie Liu.]]
 +
Field pilot studies are critical to demonstrating the effectiveness and expected costs of PFAS treatment technologies. A growing number of pilot studies testing the performance of commercially available AERs to treat PFAS-contaminated groundwater, including sites impacted by historical use of aqueous film-forming foam (AFFF), have been published recently (Figure 4)<ref name="WoodardEtAl2017"/><ref name="LiuEtAl2022"/><ref name="EllisEtAl2022"/><ref name="ChowEtAl2022">Chow, S.J., Croll, H.C., Ojeda, N., Klamerus, J., Capelle, R., Oppenheimer, J., Jacangelo, J.G., Schwab, K.J., Prasse, C., 2022. Comparative Investigation of PFAS Adsorption onto Activated Carbon and Anion Exchange Resins during Long-Term Operation of a Pilot Treatment Plant. Water Research, 226, Article 119198. [https://doi.org/10.1016/j.watres.2022.119198 doi: 10.1016/j.watres.2022.119198]</ref><ref>Zaggia, A., Conte, L., Falletti, L., Fant, M., Chiorboli, A., 2016. Use of Strong Anion Exchange Resins for the Removal of Perfluoroalkylated Substances from Contaminated Drinking Water in Batch and Continuous Pilot Plants. Water Research, 91, pp. 137–146. [https://doi.org/10.1016/j.watres.2015.12.039 doi: 10.1016/j.watres.2015.12.039]</ref>. A 9-month pilot study treating contaminated groundwater near an AFFF source zone, with total PFAS concentrations >20 &mu;g/L, showed that single-use PFAS-selective resins significantly outperform more traditional regenerable resins<ref name="EllisEtAl2022"/>. No detectable concentrations of C7 PFCAs or PFSAs of any length were observed in the first 150,000 bed volumes (BVs) of water treated with PFAS-selective resins provided by three different manufacturers (one BV is a volume of water equivalent to the volume occupied by the pore spaces in the reactor). Earlier breakthrough of shorter-chain PFCAs was observed for all resins, with the shortest chain structures eluting chromatographically (PFAS breakthrough order follows increasing chain length). Moreover, the superiority of PFAS-selective resins was less dramatic for shorter-chain PFCAs, highlighting the importance of site-specific treatment criteria when selecting among resins. Analysis  of the used resin beds following completion of the study shows that breakthrough of PFAS with the lowest affinity for AERs (e.g., short-chain PFCAs) is accelerated by competitive displacement from adsorption sites by PFAS with greater affinity (e.g., PFSAs and long-chain PFCAs).
 +
 +
Another study treating a more dilute plume of AFFF-impacted groundwater (100 – 200 ng/L total PFAS) compared PFAS-selective AER with GAC<ref name="LiuEtAl2022"/>. The same compound-dependent breakthrough patterns were observed with all media, where earlier PFCA breakthrough will likely dictate media changeout requirements. Comparing AER with GAC shows that the former adsorbed 6-7 times more PFAS than the latter before breakthrough. All PFSAs appear to breakthrough AER simultaneously after >100,000 BVs due to fouling of resins by metals present in the sourcewater, highlighting the potential importance of sourcewater pretreatment. Although AERs outperform GAC, estimated operation and maintenance (O&M) costs for both media are similar due to the higher unit media costs for AER.
  
A 2016 field demonstration of ''in situ'' bioremediation (ISB) was performed in California’s Central Valley at a former agricultural chemical site with relatively low TCP concentrations (2 µg/L). The site was first biostimulated by injecting amendments of emulsified vegetable oil (EVO) and lactate, which was followed by bioaugmentation with a microbial consortium containing Dhg. After an initial lag period of six months, TCP concentrations decreased to below laboratory detection limits (<0.005 µg/L)<ref name="Schmitt2017"/>.
+
A third pilot study compared the long-term (>1 year) performance of PFAS-selective AERs with GAC treating contaminated groundwater dominated by short-chain PFCAs<ref name="ChowEtAl2022"/>. As noted in other studies, AER outperform GAC on a bed volume-normalized basis, especially for longer-chain PFCAs and PFSAs. With lower site groundwater concentrations, quantitative relationships between chain length and breakthrough was observed for both PFCAs and PFSAs, with log-linear relationships being observed between BV10 and BV50 (bed volumes at which 10% and 50% breakthrough occurs, respectively) and chain length. These investigators also noted that deviations from a linear PFAS structure (e.g., branching of the perfluoroalkyl chain) negatively affects AER adsorption to a lesser extent than GAC.
  
{| class="wikitable" style="float:right; margin-left:10px;text-align:center;"
+
While most pilot studies have focused on evaluating single-use AERs, pilot studies have also been undertaken to test anion exchange treatment systems employing regenerable AER<ref name="WoodardEtAl2017"/>. Operating lead-lag packed beds, with 5-min EBCT each, the regenerable AER delayed breakthrough of PFCAs and PFSAs compared to GAC. Effluent PFOA breakthrough from the lag bed of AER occurred after ~10,000 BVs, necessitating resin regeneration, which was accomplished by backflushing with 10 BVs of a salt brine/organic cosolvent mixture (+1 BV salt brine pre-rinse and 10 BVs potable water post-rinse). PFAS removal results using the regenerated resin were then found to be comparable with virgin resin. Preliminary tests showed that cosolvent use can be minimized by recovering from the waste regenerant mixture by distillation. A number of studies are currently underway to test the effectiveness of different technologies for destruction of PFAS concentrates in the resulting still bottoms residual.
|+Table 2.  Advantages and limitations of TCP treatment technologies<ref name="Kane2020"/>
 
|-
 
! Technology
 
! Advantages
 
! Limitations
 
|-
 
| ZVZ
 
| style="text-align:left;" |
 
* Can degrade TCP at relatively high and low concentrations
 
* Faster reaction rates than ZVI
 
* Material is commercially available
 
| style="text-align:left;" |
 
* Higher cost than ZVI
 
* Difficult to distribute in subsurface ''in situ'' applications
 
|-
 
| Groundwater</br>Extraction and</br>Treatment
 
| style="text-align:left;" |
 
* Can cost-effectively capture and treat larger, more dilute</br>groundwater plumes than ''in situ'' technologies
 
* Well understood and widely applied technology
 
| style="text-align:left;" |
 
* Requires construction, operation and maintenance of</br>aboveground treatment infrastructure
 
* Typical technologies (e.g. GAC) may be expensive due</br>to treatment inefficiencies
 
|-
 
| ZVI
 
| style="text-align:left;" |
 
* Can degrade TCP at relatively high and low concentrations
 
* Lower cost than ZVZ
 
* Material is commercially available
 
| style="text-align:left;" |
 
* Lower reactivity than ZVZ, therefore may require higher</br>ZVI volumes or thicker PRBs
 
* Difficult to distribute in subsurface ''in situ'' applications
 
|-
 
| ISCO
 
| style="text-align:left;" |
 
* Can degrade TCP at relatively high and low concentrations
 
* Strategies to distribute amendments ''in situ'' are well established
 
* Material is commercially available
 
| style="text-align:left;" |
 
* Most effective oxidants (e.g., base-activated or heat-activated</br>persulfate) are complex to implement
 
* Secondary water quality impacts (e.g., high pH, sulfate, </br>hexavalent chromium) may limit ability to implement
 
|-
 
| ''In Situ''</br>Bioremediation
 
| style="text-align:left;" |
 
* Can degrade TCP at moderate to high concentrations
 
* Strategies to distribute amendments ''in situ'' are well established
 
* Materials are commercially available and inexpensive
 
| style="text-align:left;" |
 
* Slower reaction rates than ZVZ or ISCO
 
|}
 
The 2016 field demonstration was expanded to full-scale treatment in 2018 with biostimulation and bioaugmentation occurring over several months. The initial TCP concentration in performance monitoring wells ranged from 0.008 to 1.7 µg/L. As with the field demonstration, a lag period of approximately 6 to 8 months was observed before TCP was degraded, after which concentrations declined over fifteen months to non-detectable levels (less than 0.005 µg/L). TCP degradation was associated with increases in Dhg population and propene concentration. Long term monitoring showed that TCP remained at non-detectable levels for at least three years following treatment implementation<ref name="Merrill2019"/>.
 
  
==Treatment Comparisons and Considerations==  
+
==Costs and the Importance of Treatment Criteria==
When selecting a technology for TCP treatment, considerations include technical feasibility, ability to treat to regulated levels, potential secondary water quality impacts and relative costs. A comparison of some TCP treatment technologies is provided in Table 2.  
+
Life cycle cost analyses show that anion exchange treatment is a viable alternative to GAC adsorption<ref name="LiuEtAl2022"/><ref name="EllisEtAl2023"/>. Like other adsorption treatment systems, single-use AER treatment systems have fairly simple design with lead-lag reactor vessels in series together with associated pumping, plumbing and any water pretreatment processes (e.g., sediment filters, process for metals removal). While similar in design to GAC treatment systems, single-use AER treatment systems can have significantly lower capital costs due to the smaller reaction vessels used (as a result of shorter required EBCTs for AER)<ref name="EllisEtAl2023"/>. The smaller reactor sizes may also reduce associated costs for any structure required to house the reactors. Capital costs for regenerable AER systems are more difficult to estimate because of their added system complexity, including added infrastructure for resin regeneration, cosolvent recovery by distillation, and still bottoms management. Over the full life cycle of AER treatment systems, typically >10 years, operating costs are expected to dominate overall PFAS treatment costs<ref name="EllisEtAl2023"/>. These costs are determined largely by media usage rate (MUR), which is the frequency for replacement and disposal or regeneration of exhausted resins. Despite the higher unit costs of anion exchange media relative to GAC (often ≥3-fold greater per m<sup>3</sup>), the superior adsorption capacity and PFAS affinity of AERs leads to lower MURs that more than offset this increased sorbent cost.
  
==Summary==
+
A critical parameter that will dictate media usage or regeneration, and ultimately O&M costs, is the criteria used to determine when ‘PFAS breakthrough’ is reached. Sites are typically contaminated with a mix of different PFAS that will breakthrough resin beds into effluent at different bed volumes of water. For example, short-chain PFCAs breakthrough much more rapidly than long-chain PFCAs and PFSAs, so selection of treatment criteria that include short-chain PFCAs like perfluorobutanoic acid (PFBA) will necessitate more frequent media replacement or regeneration than criteria focused on long-chain PFAS. Likewise, adoption of the proposed drinking water limits for PFOS and PFOA (4 ng/L each)<ref>USEPA, 2023. PFAS National Primary Drinking Water Regulation Rulemaking. 88 Federal Register, pp. 18638-18754. [https://www.federalregister.gov/documents/2023/03/29/2023-05471/pfas-national-primary-drinking-water-regulation-rulemaking Federal Register Website]</ref> in effluent of the lead vessel of a lead-lag reactor system as the breakthrough criteria will require more frequent media replacement than using a less stringent criteria (e.g., 50% breakthrough of either compound in the lead vessel). Breakthrough criteria can also affect media selection because the performance advantages of the more expensive PFAS-selective AER over regenerable AER and GAC are most apparent when media replacement/regeneration is dictated by breakthrough of long-chain PFCAs and PFSAs, and when a greater extent of media adsorption capacity is used before replacement/regeneration; these advantages shrink when media replacement/regeneration is dictated by breakthrough of short-chain PFCAs<ref name="EllisEtAl2023"/><ref name="EllisEtAl2022"/><ref name="ChowEtAl2022"/>. While purchase of new media and disposal of exhausted media are minimal with regenerable AER, costs are still linked closely to regeneration frequency because of the needs for consumables (salt brine, cosolvent) and management and disposal of the resulting waste regenerant solutions, which often far exceeds media waste in terms of total waste mass and volume. These costs may be reduced by recovering cosolvent and destruction of PFAS in the resulting still bottoms<ref name="BoyerEtAl2021b"/>, areas of active research and development<ref name="StrathmannEtAl2020"/><ref name="HuangEtAl2021"/>
The relatively high toxicity of TCP has led to the development of health-based drinking water concentration values that are very low. TCP is sometimes present in groundwater and in public water systems at concentrations that exceed these health-based goals. While a handful of states have established MCLs for TCP, US federal regulatory determination is hindered by the lack of low-concentration occurrence data. Because TCP is persistent in groundwater and resistant to typical remediation methods (or costly to treat), specialized strategies may be needed to meet drinking-water-based treatment goals. ''In situ'' chemical reduction (ISCR) with zero valent zinc (ZVZ) and ''in situ'' bioremediation have been demonstrated to be effective for TCP remediation.
 
  
 
==References==
 
==References==
Line 177: Line 64:
  
 
==See Also==
 
==See Also==
ATSDR Toxicological Profile: https://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=912&tid=186
 
 
EPA Technical Fact Sheet: https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_tcp_january2014_final.pdf
 
 
Cal/EPA State Water Resources Control Board Groundwater Information Sheet: http://www.waterboards.ca.gov/gama/docs/coc_tcp123.pdf
 
 
California Water Boards Fact Sheet: http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/123-tcp/123tcp_factsheet.pdf
 

Latest revision as of 21:53, 1 July 2024

PFAS Treatment by Anion Exchange

Anion exchange has emerged as one of the most effective and economical technologies for treatment of water contaminated by per- and polyfluoroalkyl substances (PFAS). Anion exchange resins (AERs) are polymer beads (0.5–1 mm diameter) incorporating cationic adsorption sites that attract anionic PFAS by a combination of electrostatic and hydrophobic mechanisms. Both regenerable and single-use resin treatment systems are being investigated, and results from pilot-scale studies show that AERs can treat much greater volumes of PFAS-contaminated water than comparable amounts of granular activated carbon (GAC) adsorbent media. Life cycle treatment costs and environmental impacts of anion exchange and other adsorbent technologies are highly dependent upon the treatment criteria selected by site managers to determine when media is exhausted and requires replacement or regeneration.

Related Article(s):

Contributor(s):

  • Dr. Timothy J. Strathmann
  • Dr. Anderson Ellis
  • Dr. Treavor H. Boyer

Key Resource(s):

  • Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review[1]
  • Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report[2]

Introduction

Figure 1. Illustration of PFAS adsorption by anion exchange resins (AERs). Incorporation of longer alkyl group side chains on the cationic quaternary amine functional groups leads to PFAS-resin hydrophobic interactions that increase resin selectivity for PFAS over inorganic anions like Cl-.
Figure 2. Effect of perfluoroalkyl carbon chain length on the estimated bed volumes (BVs) to 50% breakthrough of PFCAs and PFSAs observed in a pilot study[3] treating PFAS-contaminated groundwater with the PFAS-selective AER (Purolite PFA694E)

Anion exchange is an adsorptive treatment technology that uses polymeric resin beads (0.5–1 mm diameter) that incorporate cationic adsorption sites to remove anionic pollutants from water[4]. Anions (e.g., NO3-) are adsorbed by an ion exchange reaction with anions that are initially bound to the adsorption sites (e.g., Cl-) during resin preparation. Many per- and polyfluoroalkyl substances (PFAS) of concern, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are present in contaminated water as anionic species that can be adsorbed by anion exchange reactions[1][5][6].

Anion Exchange Reaction:      PFAS-(aq) + Cl-(resin bound)  ⇒  PFAS-(resin bound) + Cl-(aq)

Resins most commonly applied for PFAS treatment are strong base anion exchange resins (SB-AERs) that incorporate quaternary ammonium cationic functional groups with hydrocarbon side chains (R-groups) that promote PFAS adsorption by a combination of electrostatic and hydrophobic mechanisms (Figure 1)[1][7]. SB-AERs maintain cationic functional groups independent of water pH. Recently introduced ‘PFAS-selective’ AERs show >1,000,000-fold greater selectivity for some PFAS over the Cl- initially loaded onto resins[8]. These resins also show much higher adsorption capacities for PFAS (mg PFAS adsorbed per gram of adsorbent media) than granular activated carbon (GAC) adsorbents.

PFAS of concern have a wide range of structures, including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) of varying carbon chain length[9]. As such, affinity for adsorption to AERs is heavily dependent upon PFAS structure[1][5]. In general, it has been found that the extent of adsorption increases with increasing chain length, and that PFSAs adsorb more strongly than PFCAs of similar chain length (Figure 2)[8][10]. The chain length-dependence supports the conclusion that PFAS-resin hydrophobic mechanisms contribute to adsorption. Adsorption of polyfluorinated structures also depends on structure and prevailing charge, with adsorption of zwitterionic species (containing both anionic and cationic groups in the same structure) to AERs being documented despite having a net neutral charge[8].

Reactors for Treatment of PFAS-Contaminated Water

Figure 3. Fixed bed reactor vessels containing anion exchange resins treating PFAS-contaminated water in the City of Orange, NJ. Water flow goes through both vessels in a lead-lag configuration. Picture credit: AqueoUS Vets.

Anion exchange treatment of water is accomplished by pumping contaminated water through fixed bed reactors filled with AERs (Figure 3). A common configuration involves flowing water through two reactors arranged in a lead-lag configuration[11]. Water flows through the pore spaces in close contact with resin beads. Sufficient contact time needs to be provided, referred to as empty bed contact time (EBCT), to allow PFAS to diffuse from the water into the resin structure and adsorb to exchange sites. Typical EBCTs for AER treatment of PFAS are 2-5 min, shorter than contact times recommended for granular activated carbon (GAC) adsorbents (≥10 min)[12][13]. The higher adsorption capacities and shorter EBCTs of AERs enable use of much less media and smaller vessels than GAC, reducing expected capital costs for AER treatment systems[14].

Like other adsorption media, PFAS will initially adsorb to media encountered near the inlet side of the reactor, but as ion exchange sites become saturated with PFAS, the active zone of adsorption will begin to migrate through the packed bed with increasing volume of water treated. Moreover, some PFAS with lower affinity for exchange sites (e.g., shorter-chain PFAS that are less hydrophobic) will be displaced by competition from other PFAS (e.g., longer-chain PFAS that are more hydrophobic) and move further along the bed to occupy open sites[15]. Eventually, PFAS will start to breakthrough into the effluent from the reactor, typically beginning with the shorter-chain compounds. The initial breakthrough of shorter-chain PFAS is similar to the behavior observed for AER treatment of inorganic contaminants.

Upon breakthrough, treatment is halted, and the exhausted resins are either replaced with fresh media or regenerated before continuing treatment. Most vendors are currently operating AER treatment systems for PFAS in single-use mode where virgin media is delivered to replace exhausted resins, which are transported off-site for disposal or incineration[1]. As an alternative, some providers are developing regenerable AER treatment systems, where exhausted resins are regenerated on-site by desorbing PFAS from the resins using a combination of salt brine (typically ≥1 wt% NaCl) and cosolvent (typically ≥70 vol% methanol)[1][16][17]. This mode of operation allows for longer term use of resins before replacement, but requires more complex and extensive site infrastructure. Cosolvent in the resulting waste regenerant can be recycled by distillation, which reduces chemical inputs and lowers the volume of PFAS-contaminated still bottoms requiring further treatment or disposal[16]. Currently, there is active research on various technologies for destruction of PFAS concentrates in AER still bottoms residuals[3][18].

Field Demonstrations

Figure 4. Pilot treatment system comparing three AERs (2.5 min EBCT) with GAC (10 min EBCT) for treatment of a PFAS-contaminated groundwater. Picture courtesy of Charlie Liu.

Field pilot studies are critical to demonstrating the effectiveness and expected costs of PFAS treatment technologies. A growing number of pilot studies testing the performance of commercially available AERs to treat PFAS-contaminated groundwater, including sites impacted by historical use of aqueous film-forming foam (AFFF), have been published recently (Figure 4)[11][12][15][19][20]. A 9-month pilot study treating contaminated groundwater near an AFFF source zone, with total PFAS concentrations >20 μg/L, showed that single-use PFAS-selective resins significantly outperform more traditional regenerable resins[15]. No detectable concentrations of C7 PFCAs or PFSAs of any length were observed in the first 150,000 bed volumes (BVs) of water treated with PFAS-selective resins provided by three different manufacturers (one BV is a volume of water equivalent to the volume occupied by the pore spaces in the reactor). Earlier breakthrough of shorter-chain PFCAs was observed for all resins, with the shortest chain structures eluting chromatographically (PFAS breakthrough order follows increasing chain length). Moreover, the superiority of PFAS-selective resins was less dramatic for shorter-chain PFCAs, highlighting the importance of site-specific treatment criteria when selecting among resins. Analysis of the used resin beds following completion of the study shows that breakthrough of PFAS with the lowest affinity for AERs (e.g., short-chain PFCAs) is accelerated by competitive displacement from adsorption sites by PFAS with greater affinity (e.g., PFSAs and long-chain PFCAs).

Another study treating a more dilute plume of AFFF-impacted groundwater (100 – 200 ng/L total PFAS) compared PFAS-selective AER with GAC[12]. The same compound-dependent breakthrough patterns were observed with all media, where earlier PFCA breakthrough will likely dictate media changeout requirements. Comparing AER with GAC shows that the former adsorbed 6-7 times more PFAS than the latter before breakthrough. All PFSAs appear to breakthrough AER simultaneously after >100,000 BVs due to fouling of resins by metals present in the sourcewater, highlighting the potential importance of sourcewater pretreatment. Although AERs outperform GAC, estimated operation and maintenance (O&M) costs for both media are similar due to the higher unit media costs for AER.

A third pilot study compared the long-term (>1 year) performance of PFAS-selective AERs with GAC treating contaminated groundwater dominated by short-chain PFCAs[19]. As noted in other studies, AER outperform GAC on a bed volume-normalized basis, especially for longer-chain PFCAs and PFSAs. With lower site groundwater concentrations, quantitative relationships between chain length and breakthrough was observed for both PFCAs and PFSAs, with log-linear relationships being observed between BV10 and BV50 (bed volumes at which 10% and 50% breakthrough occurs, respectively) and chain length. These investigators also noted that deviations from a linear PFAS structure (e.g., branching of the perfluoroalkyl chain) negatively affects AER adsorption to a lesser extent than GAC.

While most pilot studies have focused on evaluating single-use AERs, pilot studies have also been undertaken to test anion exchange treatment systems employing regenerable AER[11]. Operating lead-lag packed beds, with 5-min EBCT each, the regenerable AER delayed breakthrough of PFCAs and PFSAs compared to GAC. Effluent PFOA breakthrough from the lag bed of AER occurred after ~10,000 BVs, necessitating resin regeneration, which was accomplished by backflushing with 10 BVs of a salt brine/organic cosolvent mixture (+1 BV salt brine pre-rinse and 10 BVs potable water post-rinse). PFAS removal results using the regenerated resin were then found to be comparable with virgin resin. Preliminary tests showed that cosolvent use can be minimized by recovering from the waste regenerant mixture by distillation. A number of studies are currently underway to test the effectiveness of different technologies for destruction of PFAS concentrates in the resulting still bottoms residual.

Costs and the Importance of Treatment Criteria

Life cycle cost analyses show that anion exchange treatment is a viable alternative to GAC adsorption[12][14]. Like other adsorption treatment systems, single-use AER treatment systems have fairly simple design with lead-lag reactor vessels in series together with associated pumping, plumbing and any water pretreatment processes (e.g., sediment filters, process for metals removal). While similar in design to GAC treatment systems, single-use AER treatment systems can have significantly lower capital costs due to the smaller reaction vessels used (as a result of shorter required EBCTs for AER)[14]. The smaller reactor sizes may also reduce associated costs for any structure required to house the reactors. Capital costs for regenerable AER systems are more difficult to estimate because of their added system complexity, including added infrastructure for resin regeneration, cosolvent recovery by distillation, and still bottoms management. Over the full life cycle of AER treatment systems, typically >10 years, operating costs are expected to dominate overall PFAS treatment costs[14]. These costs are determined largely by media usage rate (MUR), which is the frequency for replacement and disposal or regeneration of exhausted resins. Despite the higher unit costs of anion exchange media relative to GAC (often ≥3-fold greater per m3), the superior adsorption capacity and PFAS affinity of AERs leads to lower MURs that more than offset this increased sorbent cost.

A critical parameter that will dictate media usage or regeneration, and ultimately O&M costs, is the criteria used to determine when ‘PFAS breakthrough’ is reached. Sites are typically contaminated with a mix of different PFAS that will breakthrough resin beds into effluent at different bed volumes of water. For example, short-chain PFCAs breakthrough much more rapidly than long-chain PFCAs and PFSAs, so selection of treatment criteria that include short-chain PFCAs like perfluorobutanoic acid (PFBA) will necessitate more frequent media replacement or regeneration than criteria focused on long-chain PFAS. Likewise, adoption of the proposed drinking water limits for PFOS and PFOA (4 ng/L each)[21] in effluent of the lead vessel of a lead-lag reactor system as the breakthrough criteria will require more frequent media replacement than using a less stringent criteria (e.g., 50% breakthrough of either compound in the lead vessel). Breakthrough criteria can also affect media selection because the performance advantages of the more expensive PFAS-selective AER over regenerable AER and GAC are most apparent when media replacement/regeneration is dictated by breakthrough of long-chain PFCAs and PFSAs, and when a greater extent of media adsorption capacity is used before replacement/regeneration; these advantages shrink when media replacement/regeneration is dictated by breakthrough of short-chain PFCAs[14][15][19]. While purchase of new media and disposal of exhausted media are minimal with regenerable AER, costs are still linked closely to regeneration frequency because of the needs for consumables (salt brine, cosolvent) and management and disposal of the resulting waste regenerant solutions, which often far exceeds media waste in terms of total waste mass and volume. These costs may be reduced by recovering cosolvent and destruction of PFAS in the resulting still bottoms[16], areas of active research and development[3][18]

References

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Boyer, T.H., Fang, Y., Ellis, A., Dietz, R., Choi, Y.J., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review. Water Research, 200, Article 117244. doi: 10.1016/j.watres.2021.117244   Open Access Manuscript.pdf
  2. ^ Strathmann, T.J., Higgins, C.P., Boyer, T., Schaefer, C., Ellis, A., Fang, Y., del Moral, L., Dietz, R., Kassar, C., Graham, C, 2023. Regenerable Resin Sorbent Technologies with Regenerant Solution Recycling for Sustainable Treatment of PFAS; SERDP Project ER18-1063 Final Report. 285 pages. Project Website   Report.pdf
  3. ^ 3.0 3.1 3.2 Strathmann, T.J., Higgins, C., Deeb, R., 2020. Hydrothermal Technologies for On-Site Destruction of Site Investigation Wastes Impacted by PFAS, Final Report - Phase I. SERDP Project ER18-1501. Project Website   Report.pdf
  4. ^ SenGupta, A.K., 2017. Ion Exchange in Environmental Processes: Fundamentals, Applications and Sustainable Technology. Wiley. ISBN:9781119157397 Wiley Online Library
  5. ^ 5.0 5.1 Dixit, F., Dutta, R., Barbeau, B., Berube, P., Mohseni, M., 2021. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere, 272, Article 129777. doi: 10.1016/j.chemosphere.2021.129777
  6. ^ Rahman, M.F., Peldszus, S., Anderson, W.B., 2014. Behaviour and Fate of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Drinking Water Treatment: A Review. Water Research, 50, pp. 318–340. doi: 10.1016/j.watres.2013.10.045
  7. ^ Fuller, Mark. Ex Situ Treatment of PFAS-Impacted Groundwater Using Ion Exchange with Regeneration; ER18-1027. Project Website.
  8. ^ 8.0 8.1 8.2 Fang, Y., Ellis, A., Choi, Y.J., Boyer, T.H., Higgins, C.P., Schaefer, C.E., Strathmann, T.J., 2021. Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science and Technology, 55(8), pp. 5001–5011. doi: 10.1021/acs.est.1c00769
  9. ^ Interstate Technology Regulatory Council (ITRC), 2023. Technical Resources for Addressing Environmental Releases of Per- and Polyfluoroalkyl Substances (PFAS). ITRC PFAS Website
  10. ^ Gagliano, E., Sgroi, M., Falciglia, P.P., Vagliasindi, F.G.A., Roccaro, P., 2020. Removal of Poly- and Perfluoroalkyl Substances (PFAS) from Water by Adsorption: Role of PFAS Chain Length, Effect of Organic Matter and Challenges in Adsorbent Regeneration. Water Research, 171, Article 115381. doi: 10.1016/j.watres.2019.115381
  11. ^ 11.0 11.1 11.2 Woodard, S., Berry, J., Newman, B., 2017. Ion Exchange Resin for PFAS Removal and Pilot Test Comparison to GAC. Remediation, 27(3), pp. 19–27. doi: 10.1002/rem.21515
  12. ^ 12.0 12.1 12.2 12.3 Liu, C. J., Murray, C.C., Marshall, R.E., Strathmann, T.J., Bellona, C., 2022. Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater by Granular Activated Carbon and Anion Exchange Resins: A Pilot-Scale Comparative Assessment. Environmental Science: Water Research and Technology, 8(10), pp. 2245–2253. doi: 10.1039/D2EW00080F
  13. ^ Liu, C.J., Werner, D., Bellona, C., 2019. Removal of Per- and Polyfluoroalkyl Substances (PFASs) from Contaminated Groundwater Using Granular Activated Carbon: A Pilot-Scale Study with Breakthrough Modeling. Environmental Science: Water Research and Technology, 5(11), pp. 1844–1853. doi: 10.1039/C9EW00349E
  14. ^ 14.0 14.1 14.2 14.3 14.4 Ellis, A.C., Boyer, T.H., Fang, Y., Liu, C.J., Strathmann, T.J., 2023. Life Cycle Assessment and Life Cycle Cost Analysis of Anion Exchange and Granular Activated Carbon Systems for Remediation of Groundwater Contaminated by Per- and Polyfluoroalkyl Substances (PFASs). Water Research, 243, Article 120324. doi: 10.1016/j.watres.2023.120324
  15. ^ 15.0 15.1 15.2 15.3 Ellis, A.C., Liu, C.J., Fang, Y., Boyer, T.H., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2022. Pilot Study Comparison of Regenerable and Emerging Single-Use Anion Exchange Resins for Treatment of Groundwater Contaminated by per- and Polyfluoroalkyl Substances (PFASs). Water Research, 223, Article 119019. doi: 10.1016/j.watres.2022.119019   Open Access Manuscript
  16. ^ 16.0 16.1 16.2 Boyer, T.H., Ellis, A., Fang, Y., Schaefer, C.E., Higgins, C.P., Strathmann, T.J., 2021. Life Cycle Environmental Impacts of Regeneration Options for Anion Exchange Resin Remediation of PFAS Impacted Water. Water Research, 207, Article 117798. doi: 10.1016/j.watres.2021.117798   Open Access Manuscript
  17. ^ Houtz, E., (projected completion 2025). Treatment of PFAS in Groundwater with Regenerable Anion Exchange Resin as a Bridge to PFAS Destruction, Project ER23-8391. Project Website.
  18. ^ 18.0 18.1 Huang, Q., Woodard, S., Nickleson, M., Chiang, D., Liang, S., Mora, R., 2021. Electrochemical Oxidation of Perfluoroalkyl Acids in Still Bottoms from Regeneration of Ion Exchange Resins Phase I - Final Report. SERDP Project ER18-1320. Project Website   Report.pdf
  19. ^ 19.0 19.1 19.2 Chow, S.J., Croll, H.C., Ojeda, N., Klamerus, J., Capelle, R., Oppenheimer, J., Jacangelo, J.G., Schwab, K.J., Prasse, C., 2022. Comparative Investigation of PFAS Adsorption onto Activated Carbon and Anion Exchange Resins during Long-Term Operation of a Pilot Treatment Plant. Water Research, 226, Article 119198. doi: 10.1016/j.watres.2022.119198
  20. ^ Zaggia, A., Conte, L., Falletti, L., Fant, M., Chiorboli, A., 2016. Use of Strong Anion Exchange Resins for the Removal of Perfluoroalkylated Substances from Contaminated Drinking Water in Batch and Continuous Pilot Plants. Water Research, 91, pp. 137–146. doi: 10.1016/j.watres.2015.12.039
  21. ^ USEPA, 2023. PFAS National Primary Drinking Water Regulation Rulemaking. 88 Federal Register, pp. 18638-18754. Federal Register Website

See Also