Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Environmental Fate)
(Heating Method)
 
(808 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Contaminated Sediment Risk Assessment==
+
==Thermal Conduction Heating for Treatment of PFAS-Impacted Soil==  
[[Contaminated Sediments - Introduction | Contaminated sediments]] in rivers and streams, lakes, coastal harbors, and estuaries have the potential to pose ecological and human health risks. The goals of risk assessment applied to contaminated sediments are to characterize the nature and magnitude of the current and potential threats to human health, wildlife and ecosystem functioning posed by contamination; identify the key factors contributing to the potential health and ecological risks; evaluate how implementation of one or more remedy actions will mitigate the risks in the short and long term; and evaluate the risks and impacts from sediment management, both during and after any dredging or other remedy construction activities.  
+
Removal of [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]] compounds from impacted soils is challenging due to the modest volatility and varying properties of most PFAS compounds. Thermal treatment technologies have been developed for treatment of semi-volatile compounds in soils such as dioxins, furans, poly-aromatic hydrocarbons and poly-chlorinated biphenyls at temperatures near 325&deg;C. In controlled bench-scale testing, complete removal of targeted PFAS compounds to concentrations below reporting limits of 0.5 µg/kg was demonstrated at temperatures of 400&deg;C<ref name="CrownoverEtAl2019"> Crownover, E., Oberle, D., Heron, G., Kluger, M., 2019.  Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation. Remediation Journal, 29(4), pp. 77-81. [https://doi.org/10.1002/rem.21623 doi: 10.1002/rem.21623]</ref>. Three field-scale thermal PFAS treatment projects that have been completed in the US include an in-pile treatment demonstration, an ''in situ'' vadose zone treatment demonstration and a larger scale treatment demonstration with excavated PFAS-impacted soil in a constructed pile. Based on the results, thermal treatment temperatures of at least 400&deg;C and a holding time of 7-10 days are recommended for reaching local and federal PFAS soil standards. The energy requirement to treat typical wet soil ranges from 300 to 400 kWh per cubic yard, exclusive of heat losses which are scale dependent. Extracted vapors have been treated using condensation and granular activated charcoal filtration, with thermal and catalytic oxidation as another option which is currently being evaluated for field scale applications. Compared to other options such as soil washing, the ability to treat on site and to treat all soil fractions is an advantage.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
*[[Contaminated Sediments - Introduction]]
 
*[[In Situ Treatment of Contaminated Sediments with Activated Carbon]]
 
*[[Sediment Capping]]
 
*[[Passive Sampling of Sediments]]
 
  
'''Contributor(s):'''
+
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
*Richard J. Wenning
+
*[[Thermal Conduction Heating (TCH)]]
*Sabine E. Apitz
 
  
'''Key Resource(s):'''
+
'''Contributors:''' Gorm Heron, Emily Crownover, Patrick Joyce, Ramona Iery
* Contaminated Sediment Remediation Guidance for Hazardous Waste Sites<ref name="USEPA2005">United States Environmental Protection Agency (USEPA), 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. Office of Solid Waste and Emergency Response, Washington, D.C. EPA-540-R-05-012. OSWER 9355.0-85.  Free download from: [https://semspub.epa.gov/work/HQ/174471.pdf USEPA]&nbsp;&nbsp; [[Media: EPA-540-R-05-012.pdf | Report.pdf]]</ref>
 
  
* Principles for Environmental Risk Assessment of the Sediment Compartment<ref name="Tarazona2014">Tarazona, J.V., Versonnen, B., Janssen, C., De Laender, F., Vangheluwe, M. and Knight, D., 2014. Principles for Environmental Risk Assessment of the Sediment Compartment: Proceedings of the Topical Scientific Workshop. 7-8 May 2013. European Chemicals Agency, Helsinki. Document ECHA-14-R-13-EN. Free download from: [https://echa.europa.eu/documents/10162/22816050/environmental_risk_assessment_final_en.pdf/3515b685-6601-40ce-bd48-3f8d5332c0f8 European Chemicals Agency]&nbsp;&nbsp; [[Media: ECHA-14-R-13-EN.pdf | Report.pdf]]</ref>
+
'''Key Resource:'''
 +
*Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation<ref name="CrownoverEtAl2019"/>
  
* Assessing and managing contaminated sediments:
+
==Introduction==
:: Part I, Developing an Effective Investigation and Risk Evaluation Strategy<ref name="Apitz2005a">Apitz, S.E., Davis, J.W., Finkelstein, K., Hohreiter, D.W., Hoke, R., Jensen, R.H., Jersak, J., Kirtay, V.J., Mack, E.E., Magar, V.S. and Moore, D., 2005. Assessing and Managing Contaminated Sediments: Part I, Developing an Effective Investigation and Risk Evaluation Strategy. Integrated Environmental Assessment and Management, 1(1), pp. 2-8. [https://doi.org/10.1897/IEAM_2004a-002.1 DOI: 10.1897/IEAM_2004a-002.1] Free access article from: [https://setac.onlinelibrary.wiley.com/doi/epdf/10.1897/IEAM_2004a-002.1 Society of Environmental Toxicology and Chemistry]&nbsp;&nbsp; [[Media: Apitz2005a.pdf | Report.pdf]]</ref>
+
[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]] have become prominent emerging contaminants in soil and groundwater. Soil source zones have been identified at locations where the chemicals were produced, handled or used. Few effective options exist for treatments that can meet local and federal soil standards. Over the past 30 plus years, thermal remediation technologies have grown from experimental and innovative prospects to mature and accepted solutions deployed effectively at many sites. More than 600 thermal case studies have been summarized by Horst and colleagues<ref name="HorstEtAl2021">Horst, J., Munholland, J., Hegele, P., Klemmer, M., Gattenby, J., 2021. In Situ Thermal Remediation for Source Areas: Technology Advances and a Review of the Market From 1988–2020. Groundwater Monitoring & Remediation, 41(1), p. 17. [https://doi.org/10.1111/gwmr.12424  doi: 10.1111/gwmr.12424]&nbsp; [[Media: gwmr.12424.pdf | Open Access Manuscript]]</ref>. [[Thermal Conduction Heating (TCH)]] has been used for higher temperature applications such as removal of [[1,4-Dioxane]]. This article reports recent experience with TCH treatment of PFAS-impacted soil.
:: Part II, Evaluating Risk and Monitoring Sediment Remedy Effectiveness<ref name="Apitz2005b">Apitz, S.E., Davis, J.W., Finkelstein, K., Hohreiter, D.W., Hoke, R., Jensen, R.H., Jersak, J., Kirtay, V.J., Mack, E.E., Magar, V.S. and Moore, D., 2005b. Assessing and Managing Contaminated Sediments: Part II, Evaluating Risk and Monitoring Sediment Remedy Effectiveness. Integrated Environmental Assessment and Management, 1(1), pp.e1-e14. [https://doi.org/10.1897/IEAM_2004a-002e.1 DOI: 10.1897/IEAM_2004a-002e.1]</ref>
+
 
 +
==Target Temperature and Duration==
 +
PFAS behave differently from most other organics subjected to TCH treatment. While the boiling points of individual PFAS fall in the range of 150-400&deg;C, their chemical and physical behavior creates additional challenges. Some PFAS form ionic species in certain pH ranges and salts under other chemical conditions. This intricate behavior and our limited understanding of what this means for our ability to remove the PFAS from soils means that direct testing of thermal treatment options is warranted. Crownover and colleagues<ref name="CrownoverEtAl2019"/> subjected PFAS-laden soil to bench-scale heating to temperatures between 200 and 400&deg;C which showed strong reductions of PFAS concentrations at 350&deg;C and complete removal of many PFAS compounds at 400&deg;C. The soil concentrations of targeted PFAS were reduced to nearly undetectable levels in this study.
 +
 
 +
==Heating Method==
 +
For semi-volatile compounds such as dioxins, furans, poly-chlorinated biphenyls (PCBs) and Poly-Aromatic Hydrocarbons (PAH), thermal conduction heating has evolved as the dominant thermal technology because it is capable of achieving soil temperatures higher than the boiling point of water, which are necessary for complete removal of these organic compounds. Temperatures between 200 and 500&deg;C have been required to achieve the desired reduction in contaminant concentrations<ref name="StegemeierVinegar2001">Stegemeier, G.L., Vinegar, H.J., 2001. Thermal Conduction Heating for In-Situ Thermal Desorption of Soils. Ch. 4.6, pp. 1-37. In: Chang H. Oh (ed.), Hazardous and Radioactive Waste Treatment Technologies Handbook, CRC Press, Boca Raton, FL. ISBN 9780849395864 [[Media: StegemeierVinegar2001.pdf | Open Access Article]]</ref>. TCH has become a popular technology for PFAS treatment because temperatures in the 400&deg;C range are needed.
 +
 
 +
The energy source for TCH can be electricity (most commonly used), or fossil fuels (typically gas, diesel or fuel oil). Electrically powered TCH offers the largest flexibility for power input which also can be supplied by renewable and sustainable energy sources.
 +
 
 +
==Energy Usage==
  
==Introduction==
 
Improving the management of [[Contaminated Sediments - Introduction | contaminated sediments]] is of growing concern globally. Sediment processes in both marine and freshwater environments are important to the function of aquatic ecosystems<ref name="Apitz2012">Apitz, S.E., 2012. Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-Ecosystem Regional Assessment (SEcoRA), Science of the Total Environment, 415, pp. 9-30. [https://doi.org/10.1016/j.scitotenv.2011.05.060 DOI:10.1016/j.scitotenv.2011.05.060] Free download from: [https://d1wqtxts1xzle7.cloudfront.net/7588577/Apitz_SEcoRA%202012.pdf?1326618388=&response-content-disposition=inline%3B+filename%3DConceptualizing_the_role_of_sediment_in.pdf&Expires=1637094311&Signature=c2wczG59XxkitPjmBhc9PaODHJ8Vufg3gyzdG8tqGD6~mIVhLoz30E7eQNIghfMlH~jbch3KTVxMqD2AQFMQCSeXghIwqH~lXjGrEP07MJXCEgntzSW-V8Gws~33it5pEm9Ied64fSOvMLJR-PUXVr2OVTsVHQJHurHdGrtEmhUd90bKrC0NNlD28YLGQpkVUOlqa75e0K4sjPngwPUwUxhq18NAH6-1Uc3fQU5g5AjXwGph-VNe7EwzT-0do5OD056AsG-Eg8xIZi0ABJqMsg1wb92tIPpmmNy6ntdklHeN6tq~3IJFB7Tg8XYntQ-CGT8pYV9S7Kz14GhXVm9OQA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA Academia.edu]</ref>, and many organisms rely on certain sediment quality and quantity characteristics for their life cycle<ref name="Hauer2018">Hauer, C., Leitner, P., Unfer, G., Pulg, U., Habersack, H. and Graf, W., 2018. The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In: Schmutz S., Sendzimir J. (ed.s) Riverine Ecosystem Management. Aquatic Ecology Series, vol. 8, pp. 151-169. Springer. [https://doi.org/10.1007/978-3-319-73250-3_8 DOI: 10.1007/978-3-319-73250-3_8]  Open access book from: [https://library.oapen.org/bitstream/handle/20.500.12657/27726/1002280.pdf?seque#page=153 SpringerOpen]</ref>. Human health can also be affected by sediment conditions, either via direct contact, as a result of sediment impacts on water quality, or because of the strong influence sediments can have on the quality of fish and shellfish consumed by people<ref name="Greenfield2015">Greenfield, B.K., Melwani, A.R. and Bay, S.M., 2015. A Tiered Assessment Framework to Evaluate Human Health Risk of Contaminated Sediment. Integrated Environmental Assessment and Management, 11(3), pp. 459-473.  [https://doi.org/10.1002/ieam.1610 DOI: 10.1002/ieam.1610]</ref>. A common approach to achieving the explicit management goals inherent in different sediment assessment frameworks in North America and elsewhere is the use of the ecological risk assessment (ERA)<ref name="USEPA1997a">US Environmental Protection Agency (USEPA), 1997. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States: Volume 1, National Sediment Quality Survey. EPA-823R-97-006. Washington, DC.  [[Media: EPA-823-R-97-006.pdf | Report.pdf]]</ref>. An ERA “evaluates the likelihood and magnitude of adverse effects from exposure to a chemical for organisms, such as animals, plants, or microbes, in the environment”<ref name="SETAC2018">Society of Environmental Toxicology and Chemistry (SETAC), 2018. Technical Issue Paper: Environmental Risk Assessment of Chemicals. SETAC, Pensacola, FL. 5 pp. Free download from: [https://cdn.ymaws.com/www.setac.org/resource/resmgr/publications_and_resources/setac_tip_era.pdf SETAC]&nbsp;&nbsp; [[Media: setac_tip_era2018.pdf | Report.pdf]]</ref>. An ERA provides information relevant to the management decision-making process<ref name="Stahl2001">Stahl, R.G., Bachman, R., Barton, A., Clark, J., deFur, P., Ells, S., Pittinger, C., Slimak, M., Wentsel, R., 2001. Risk Management: Ecological Risk-Based Decision Making. SETAC Press, Pensacola, FL, 222 pp.  ISBN: 978-1-880611-26-5</ref>. It should be performed in a scientifically based, defensible manner that is cost-effective and protective of human health and the environment<ref name="CNO1999">Chief of Naval Operations (CNO), 1999. Navy Policy for Conducting Ecological Risk Assessments, Letter 5090, Ser N453E/9U595355, dated 05 April 99. Department of the Navy, Washington, DC. Free download from: [https://www.navfac.navy.mil/content/dam/navfac/Specialty%20Centers/Engineering%20and%20Expeditionary%20Warfare%20Center/Environmental/Restoration/er_pdfs/gpr/cno-ev-pol-era-19990405.pdf the US Navy]&nbsp;&nbsp; [[Media: CNO1999.pdf | Report.pdf]]</ref>. Therefore, science-based methods for assessing sediment quality and use of risk-based decision-making in sediment management are important for identifying conditions suspected to adversely affect ecological and human services provided by sediments, and predicting the likely consequences of different sediment management actions<ref name="Bridges2006">Bridges, T.S., Apitz, S.E., Evison, L., Keckler, K., Logan, M., Nadeau, S. and Wenning, R.J., 2006. Risk‐Based Decision Making to Manage Contaminated Sediments. Integrated Environmental Assessment and Management, 2(1), pp. 51-58.  [https://doi.org/10.1002/ieam.5630020110 DOI: 10.1002/ieam.5630020110]  Free access article from: [https://setac.onlinelibrary.wiley.com/doi/epdf/10.1002/ieam.5630020110 SETAC]</ref><ref name="Apitz2011">Apitz, S.E., 2011. Integrated Risk Assessments for the Management of Contaminated Sediments in Estuaries and Coastal Systems. In: Wolanski, E. and McLusky, D.S. (eds.) Treatise on Estuarine and Coastal Science, Vol 4, pp. 311–338. Waltham: Academic Press. ISBN: 9780123747112</ref>.
 
  
Sediment risk assessment is increasingly used by governmental agencies to support sediment management in freshwater, estuarine, and marine environments. Strategies for sediment management encompass a wide variety of actions, from removal, capping or treatment of contaminated sediment to the monitoring of natural processes, including sedimentation, binding, and bio- and photo-degradation that serve to reduce the potential threat to aquatic life over time. It is not uncommon to revisit a sediment risk assessment periodically to check how changed environmental conditions reflected in sediment and biotic sampling work has either reduced or exacerbated the threats identified in the initial assessment.  
+
During&nbsp;large&nbsp;precipitation&nbsp;events the rate of water deposition exceeds the rate of water infiltration, resulting in surface runoff (also called stormwater runoff). Surface characteristics including soil texture, presence of impermeable surfaces (natural and artificial), slope, and density and type of vegetation all influence the amount of surface runoff from a given land area. The use of passive systems such as retention ponds and biofiltration cells for treatment of surface runoff is well established for urban and roadway runoff. Treatment in those cases is typically achieved by directing runoff into and through a small constructed wetland, often at the outlet of a retention basin, or via filtration by directing runoff through a more highly engineered channel or vault containing the treatment materials. Filtration based technologies have proven to be effective for the removal of metals, organics, and suspended solids<ref>Sansalone, J.J., 1999. In-situ performance of a passive treatment system for metal source control. Water Science and Technology, 39(2), pp. 193-200. [https://doi.org/10.1016/S0273-1223(99)00023-2 doi: 10.1016/S0273-1223(99)00023-2]</ref><ref>Deletic, A., Fletcher, T.D., 2006. Performance of grass filters used for stormwater treatment—A field and modelling study. Journal of Hydrology, 317(3-4), pp. 261-275. [http://dx.doi.org/10.1016/j.jhydrol.2005.05.021 doi: 10.1016/j.jhydrol.2005.05.021]</ref><ref>Grebel, J.E., Charbonnet, J.A., Sedlak, D.L., 2016. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Research, 88, pp. 481-491. [http://dx.doi.org/10.1016/j.watres.2015.10.019 doi: 10.1016/j.watres.2015.10.019]</ref><ref>Seelsaen, N., McLaughlan, R., Moore, S., Ball, J.E., Stuetz, R.M., 2006. Pollutant removal efficiency of alternative filtration media in stormwater treatment. Water Science and Technology, 54(6-7), pp. 299-305. [https://doi.org/10.2166/wst.2006.617 doi: 10.2166/wst.2006.617]</ref>.
  
At present, several countries lack common recommendations specific to conducting risk assessment of contaminated sediments<ref name="Bruce2020">Bruce, P., Sobek, A., Ohlsson, Y. and Bradshaw, C., 2020. Risk assessments of contaminated sediments from the perspective of weight of evidence strategies – a Swedish case study. Human and Ecological Risk Assessment, 27(5), pp. 1366-1387.  [https://doi.org/10.1080/10807039.2020.1848414 DOI: 10.1080/10807039.2020.1848414]&nbsp;&nbsp; [https://www.tandfonline.com/doi/full/10.1080/10807039.2020.1848414 Website]</ref>. In the European Union, sediment has played a secondary role in the Water Framework Directive (WFD), with most quality standards being focused on water with the option for the development of national standards for sediment and biota for bioaccumulative compounds. The Common Implementation Strategy (CIS) in 2010 provided guidance on the monitoring of contaminants in sediments and biota, but not on risk-based decision-making<ref name="EC2010">European Commission, 2010. Common Implementation Strategy For The Water Framework Directive (2000/60/EC), Technical Report - 2010 – 041; Guidance document No. 25 On Chemical Monitoring Of Sediment And Biota Under The Water Framework Directive. 82pp. ISBN 978-92-79-16224-4. [https://op.europa.eu/en/publication-detail/-/publication/5ff7a8ec-995b-4d90-a140-0cc9b4bf980d  Free download]</ref>. There are efforts underway to incorporate guidance for management of contaminated sediment in the Common Implementation Strategy in 2021<ref name="Brils2020">Brils, J., 2020. Including sediment in European River Basin Management Plans: Twenty years of work by SedNet. Journal of Soils and Sediments, 20(12), pp.4229-4237. [https://doi.org/10.1007/s11368-020-02782-1 DOI: 10.1007/s11368-020-02782-1]&nbsp;&nbsp; [https://link.springer.com/content/pdf/10.1007/s11368-020-02782-1.pdf Open Access Article]</ref>. Sediment risk assessment guidance from Norway, Canada, the Netherlands, and the US are most often referenced when assessing the risks from contaminated sediments<ref name="Bruce2020"/><ref name="Birch2018">Birch, G.F., 2018. A review of chemical-based sediment quality assessment methodologies for the marine environment. Marine Pollution Bulletin, 133, pp.218-232.  [https://doi.org/10.1016/j.marpolbul.2018.05.039 DOI: 10.1016/j.marpolbul.2018.05.039]</ref><ref name="Kwok2014">Kwok, K.W., Batley, G.E., Wenning, R.J., Zhu, L., Vangheluwe, M. and Lee, S., 2014. Sediment quality guidelines: challenges and opportunities for improving sediment management. Environmental Science and Pollution Research, 21(1), pp. 17-27. [https://doi.org/10.1007/s11356-013-1778-7 DOI: 10.1007/s11356-013-1778-7] Free download from: [https://www.researchgate.net/profile/Graeme-Batley/publication/236836992_Sediment_quality_guidelines_Challenges_and_opportunities_for_improving_sediment_management/links/0c96052b8a8f5ad0c6000000/Sediment-quality-guidelines-Challenges-and-opportunities-for-improving-sediment-management.pdf ResearchGate]</ref>. Some European countries, such as Norway, have focused their risk assessment guidance on the assessment of sediment conditions relative to general chemical thresholds, while in North America, risk assessment guidance focuses on site- or region-specific conditions<ref name="Apitz2008">Apitz, S.E., 2008. Is risk-based, sustainable sediment management consistent with European policy?. Journal of Soils and Sediments, 8(6), p.461-466. [https://doi.org/10.1007/s11368-008-0039-8 DOI: 10.1007/s11368-008-0039-8]&nbsp;&nbsp; Free download from: [https://d1wqtxts1xzle7.cloudfront.net/7081664/apitz%20jss%20risk-based%20europe-with-cover-page-v2.pdf?Expires=1637274548&Signature=KqIoYyQ6VPAFN7lKHJMVC3bbn00RRMCR68bsQNBGrFJ9kbX5BnI-aucFCqRgVUNUb1lu0Q4tzUkCjPXJRGBsTA3OnbH8Ol9sNoXZ001aOwG7tKuV8qEblGiqtQUHh9GdiNAPQsm50f~E1iozL9a6imApWjqK8oFCfdUbcUd1oaW7PCDu28KWN-k5ddefWNZBAzGIdaWt3mBJ1EYeKRrp4F6Codlny3pWCT5MpA~c4c0IKq8L7Uj~-VxH5LXjFDd7cm07JeOY8S5rlxgF1zMoTIggMo5v2M3AS3CO2SAqy7yR3HC-IjUx3RsMqKa5eS2jT1ADiXcqeVygCdCCXza05g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA Academia.edu]</ref>.
+
===Surface Runoff on Ranges===
 +
[[File: FullerFig2.png | thumb | 600 px | Figure 2. Conceptual illustration of munition constituent production and transport on military ranges. Mesoscale residues are qualitatively defined as being easily visible to the naked eye (e.g., from around 50 µm to multiple cm in size) and less likely to be transported by moving water.  Microscale residues are defined as <50 µm down to below 1 µm, and more likely to be entrained in, and transported by, moving water as particulates. Blue arrows represent possible water flow paths and include both dissolved and solid phase energetics. The red vertical arrow represents the predominant energetics dissolution process in close proximity to the residues due to precipitation.]]
 +
Surface&nbsp;runoff&nbsp;represents&nbsp;a&nbsp;major potential mechanism through which energetics residues and related materials are transported off site from range soils to groundwater and surface water receptors (Figure 2). This process is particularly important for energetics that are water soluble (e.g., [[Wikipedia: Nitrotriazolone | NTO]] and [[Wikipedia: Nitroguanidine | NQ]]) or generate soluble daughter products (e.g., [[Wikipedia: 2,4-Dinitroanisole | DNAN]] and [[Wikipedia: TNT | TNT]]). While traditional MC such as [[Wikipedia: RDX | RDX]] and [[Wikipedia: HMX | HMX]] have limited aqueous solubility, they also exhibit recalcitrance to degrade under most natural conditions. RDX and [[Wikipedia: Perchlorate | perchlorate]] are frequent groundwater contaminants on military training ranges. While actual field measurements of energetics in surface runoff are limited, laboratory experiments have been performed to predict mobile energetics contamination levels based on soil mass loadings<ref>Cubello, F., Polyakov, V., Meding, S.M., Kadoya, W., Beal, S., Dontsova, K., 2024. Movement of TNT and RDX from composition B detonation residues in solution and sediment during runoff. Chemosphere, 350, Article 141023. [https://doi.org/10.1016/j.chemosphere.2023.141023 doi: 10.1016/j.chemosphere.2023.141023]</ref><ref>Karls, B., Meding, S.M., Li, L., Polyakov, V., Kadoya, W., Beal, S., Dontsova, K., 2023. A laboratory rill study of IMX-104 transport in overland flow. Chemosphere, 310, Article 136866. [https://doi.org/10.1016/j.chemosphere.2022.136866 doi: 10.1016/j.chemosphere.2022.136866]&nbsp; [[Media: KarlsEtAl2023.pdf | Open Access Article]]</ref><ref>Polyakov, V., Beal, S., Meding, S.M., Dontsova, K., 2025. Effect of gypsum on transport of IMX-104 constituents in overland flow under simulated rainfall. Journal of Environmental Quality, 54(1), pp. 191-203. [https://doi.org/10.1002/jeq2.20652 doi: 10.1002/jeq2.20652]&nbsp; [[Media: PolyakovEtAl2025.pdf | Open Access Article.pdf]]</ref><ref>Polyakov, V., Kadoya, W., Beal, S., Morehead, H., Hunt, E., Cubello, F., Meding, S.M., Dontsova, K., 2023. Transport of insensitive munitions constituents, NTO, DNAN, RDX, and HMX in runoff and sediment under simulated rainfall. Science of the Total Environment, 866, Article 161434. [https://doi.org/10.1016/j.scitotenv.2023.161434 doi: 10.1016/j.scitotenv.2023.161434]&nbsp; [[Media: PolyakovEtAl2023.pdf | Open Access Article.pdf]]</ref><ref>Price, R.A., Bourne, M., Price, C.L., Lindsay, J., Cole, J., 2011. Transport of RDX and TNT from Composition-B Explosive During Simulated Rainfall. In: Environmental Chemistry of Explosives and Propellant Compounds in Soils and Marine Systems: Distributed Source Characterization and Remedial Technologies. American Chemical Society, pp. 229-240. [https://doi.org/10.1021/bk-2011-1069.ch013 doi: 10.1021/bk-2011-1069.ch013]</ref>. For example, in a previous small study, MC were detected in surface runoff from an active live-fire range<ref>Fuller, M.E., 2015. Fate and Transport of Colloidal Energetic Residues. Department of Defense Strategic Environmental Research and Development Program (SERDP), Project ER-1689. [https://serdp-estcp.mil/projects/details/10760fd6-fb55-4515-a629-f93c555a92f0 Project Website]&nbsp;&nbsp; [[Media: ER-1689-FR.pdf | Final Report.pdf]]</ref>, and more recent sampling has detected MC in marsh surface water adjacent to the same installation (personal communication).  Another recent report from Canada also detected RDX in both surface runoff and surface water at low part per billion levels in a survey of several military demolition sites<ref>Lapointe, M.-C., Martel, R., Diaz, E., 2017. A Conceptual Model of Fate and Transport Processes for RDX Deposited to Surface Soils of North American Active Demolition Sites. Journal of Environmental Quality, 46(6), pp. 1444-1454. [https://doi.org/10.2134/jeq2017.02.0069 doi: 10.2134/jeq2017.02.0069]</ref>. However, overall, data regarding the MC contaminant profile of surface runoff from ranges is very limited, and the possible presence of non-energetic constituents (e.g., metals, binders, plasticizers) in runoff has not been examined. Additionally, while energetics-contaminated surface runoff is an important concern, mitigation technologies specifically for surface runoff have not yet been developed and widely deployed in the field. To effectively capture and degrade MC and associated compounds that are present in surface runoff, novel treatment media are needed to sorb a broad range of energetic materials and to transform the retained compounds through abiotic and/or microbial processes.
  
There is general consensus from a regulatory perspective, globally, on the importance of sediment risk assessment. Technical guidance documents prepared by Canada<ref name="Fletcher2008">Fletcher, R., Welsh, P. and Fletcher, T., 2008. Guidelines for Identifying, Assessing, and Managing Contaminated Sediments in Ontario. Ontario Ministry of the Environment. PIBS6658e. [http://www.ene.gov.on.ca/publications/6658e Website]</ref><ref name="HealthCanada2017">Health Canada, 2017. Supplemental Guidance on Human Health Risk Assessment of Contaminated Sediments: Direct Contact Pathway,  Federal Contaminated Site Risk Assessment in Canada. ISBN: 978-0-660-07989-9. Cat.: H144-41/2017E-PDF. Pub. 160382. Free download from: [https://publications.gc.ca/collections/collection_2018/sc-hc/H144-41-2017-eng.pdf Health Canada]&nbsp;&nbsp; [[Media: HealthCanada2117.pdf | Report.pdf]]</ref> , the European Union<ref name="Tarazona2014"/>, and the United States Environmental Protection Agency (USEPA)<ref name="USEPA2005"/> advise a flexible, tiered approach for sediment risk assessment. Sediment quality guidelines in many countries reflect the scientific importance of including certain sediment-specific measurement and biotic assessment endpoints, as well as certain physical sediment processes and chemical transformation processes potentially affecting biotic responses to contaminant exposure in the sediment<ref name="Wenning2005">Wenning, R.J. Batley, G.E., Ingersoll, C.G., and Moore, D.W., (eds), 2005. Use Of Sediment Quality Guidelines And Related Tools For The Assessment Of Contaminated Sediments. SETAC, Pensacola, FL. 815 ppISBN 1-880611-71-6.</ref>. New risk assessment methods continue to emerge in the scientific literature<ref name="Benson2018">Benson, N.U., Adedapo, A.E., Fred-Ahmadu, O.H., Williams, A.B., Udosen, E.D., Ayejuyo, O.O. and Olajire, A.A., 2018. A new method for assessment of sediment-associated contamination risks using multivariate statistical approach. MethodsX, 5, pp. 268-276[https://doi.org/10.1016/j.mex.2018.03.005 DOI: 10.1016/j.mex.2018.03.005]&nbsp;&nbsp; [https://www.sciencedirect.com/science/article/pii/S2215016118300438/pdfft?md5=85b8a3a1062310e4c7c4a06e670e66c4&pid=1-s2.0-S2215016118300438-main.pdf Free Access Article]&nbsp;&nbsp; [[Media: Benson2018.pdf | Report.pdf]]</ref><ref name="Saeedi2015">Saeedi, M. and Jamshidi-Zanjani, A., 2015. Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecological Indicators, 58, pp. 235-243.  [https://doi.org/10.1016/j.ecolind.2015.05.047 DOI: 10.1016/j.ecolind.2015.05.047]  Free download from: [https://www.academia.edu/download/49801572/mRAC_published.pdf Academis.edu]</ref><ref name="Vaananen2018">Väänänen, K., Leppänen, M.T., Chen, X. and Akkanen, J., 2018. Metal bioavailability in ecological risk assessment of freshwater ecosystems: from science to environmental management. Ecotoxicology and Environmental Safety, 147, pp. 430-446.  [https://doi.org/10.1016/j.ecoenv.2017.08.064 DOI: 10.1016/j.ecoenv.2017.08.064]</ref>. These new methods, however, are likely to be considered supplemental to the more generalized framework shared globally.
+
Surface runoff of organic and inorganic contaminants from live-fire ranges is a challenging issue for the Department of Defense (DoD).  Potentially even more problematic is the fact that inputs to surface waters from large testing and training ranges typically originate from multiple sources, often encompassing hundreds of acresNo available technologies are currently considered effective for controlling non-point source energetics-laden surface runoffWhile numerous technologies exist to treat collected explosives residues, contaminated soil and even groundwater, the decentralized nature and sheer volume of military range runoff have precluded the use of treatment technologies at full scale in the field.
  
==Fundamentals of Sediment Risk Assessment==
+
==Range Runoff Treatment Technology Components==
[[File: SedRiskFig1.PNG | thumb |700px|Figure 1. Schematic of the sediment risk assessment process]]
+
Based on the conceptual foundation of previous research into surface water runoff treatment for other contaminants, with a goal to “trap and treat” the target compounds, the following components were selected for inclusion in the technology developed to address range runoff contaminated with energetic compounds.
Whereas there is strong evidence of anthropogenic impacts on the benthic community at many sediment sites, the degree of toxicity (or even its presence or absence) cannot be predicted with absolute certainty using contaminant concentrations alone<ref name="Apitz2011"/>. A sediment ERA should include lines of evidence (LOEs) derived from several different investigations<ref name="Wenning2005"/>. One common approach to develop several of these LOEs in a decision framework is the triad approach. Triad-based assessment frameworks require evidence based on sediment chemistry, toxicity, and benthic community structure (possibly including evidence of bioaccumulation) to designate sediment as toxic and requiring management or control<ref name="Chapman1996">Chapman, P.M., Paine, M.D., Arthur, A.D., Taylor, L.A., 1996. A triad study of sediment quality associated with a major, relatively untreated marine sewage discharge. Marine Pollution Bulletin 32(1), pp. 47–64.  [https://doi.org/10.1016/0025-326X(95)00108-Y DOI: 10.1016/0025-326X(95)00108-Y]</ref>. In some decision frameworks, particularly those used to establish and rank risks in national or regional programs, all components of the triad are carried out simultaneously, with the various LOEs combined to support weight of evidence (WOE) decision making. In other frameworks, LOEs are tiered to minimize costs by collecting only the data required to make a decision and leaving some potential consequences and uncertainties unresolved.
 
  
Figure 1 provides an overview of a sediment risk assessment process. The first step, and a fundamental requirement, in sediment risk assessment, involves scoping and planning prior to undertaking work. This is important for optimizing the available assessment resource and conducting an assessment at the appropriate level of detail that is transparent and free, to the extent possible, of any bias or preconceived beliefs concerning the outcome<ref name="Hill2000">Hill, R.A., Chapman, P.M., Mann, G.S. and Lawrence, G.S., 2000. Level of Detail in Ecological Risk Assessments. Marine Pollution Bulletin, 40(6), pp. 471-477. [https://doi.org/10.1016/S0025-326X(00)00036-9 DOI: 10.1016/S0025-326X(00)00036-9]</ref>.
+
===Peat===
 +
Previous research demonstrated that a peat-based system provided a natural and sustainable sorptive medium for organic explosives such as HMX, RDX, and TNT, allowing much longer residence times than predicted from hydraulic loading alone<ref>Fuller, M.E., Hatzinger, P.B., Rungkamol, D., Schuster, R.L., Steffan, R.J., 2004. Enhancing the attenuation of explosives in surface soils at military facilities: Combined sorption and biodegradation. Environmental Toxicology and Chemistry, 23(2), pp. 313-324. [https://doi.org/10.1897/03-187 doi: 10.1897/03-187]</ref><ref>Fuller, M.E., Lowey, J.M., Schaefer, C.E., Steffan, R.J., 2005. A Peat Moss-Based Technology for Mitigating Residues of the Explosives TNT, RDX, and HMX in Soil. Soil and Sediment Contamination: An International Journal, 14(4), pp. 373-385. [https://doi.org/10.1080/15320380590954097 doi: 10.1080/15320380590954097]</ref><ref name="FullerEtAl2009">Fuller, M.E., Schaefer, C.E., Steffan, R.J., 2009. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions. Chemosphere, 77(8), pp. 1076-1083. [https://doi.org/10.1016/j.chemosphere.2009.08.044 doi: 10.1016/j.chemosphere.2009.08.044]</ref><ref>Hatzinger, P.B., Fuller, M.E., Rungkamol, D., Schuster, R.L., Steffan, R.J., 2004. Enhancing the attenuation of explosives in surface soils at military facilities: Sorption-desorption isotherms. Environmental Toxicology and Chemistry, 23(2), pp. 306-312. [https://doi.org/10.1897/03-186 doi: 10.1897/03-186]</ref><ref name="SchaeferEtAl2005">Schaefer, C.E., Fuller, M.E., Lowey, J.M., Steffan, R.J., 2005. Use of Peat Moss Amended with Soybean Oil for Mitigation of Dissolved Explosive Compounds Leaching into the Subsurface: Insight into Mass Transfer Mechanisms. Environmental Engineering Science, 22(3), pp. 337-349. [https://doi.org/10.1089/ees.2005.22.337 doi: 10.1089/ees.2005.22.337]</ref>. Peat moss represents a bioactive environment for treatment of the target contaminants. While the majority of the microbial reactions are aerobic due to the presence of measurable dissolved oxygen in the bulk solution, anaerobic reactions (including methanogenesis) can occur in microsites within the peat. The peat-based substrate acts not only as a long term electron donor as it degrades but also acts as a strong sorbent. This is important in intermittently loaded systems in which a large initial pulse of MC can be temporarily retarded on the peat matrix and then slowly degraded as they desorb<ref name="FullerEtAl2009"/><ref name="SchaeferEtAl2005"/>. This increased residence time enhances the biotransformation of energetics and promotes the immobilization and further degradation of breakdown products. Abiotic degradation reactions are also likely enhanced by association with the organic-rich peat (e.g., via electron shuttling reactions of [[Wikipedia: Humic substance | humics]])<ref>Roden, E.E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., Konishi, H., Xu, H., 2010. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience, 3, pp. 417-421. [https://doi.org/10.1038/ngeo870 doi: 10.1038/ngeo870]</ref>.
  
===Screening-Level Risk Assessment (SLRA)===
+
===Soybean Oil===  
Technical guidance in many countries strongly encourages sediment risk assessment to begin with a Screening-Level Risk Assessment (SLRA)<ref name="USEPA2005"/><ref name="Tarazona2014"/><ref name="Fletcher2008"/>. The SLRA is a simplified risk assessment conducted using limited data and often assuming certain, generally conservative and generic, sediment characteristics, sediment contaminant levels, and exposure parameters in the absence of sufficient readily available information<ref name="Hope2006">Hope, B.K., 2006. An examination of ecological risk assessment and management practices. Environment International, 32(8), pp. 983-995.  [https://doi.org/10.1016/j.envint.2006.06.005 DOI: 10.1016/j.envint.2006.06.005]</ref><ref name="Weinstein2010">Weinstein, J.E., Crawford, K.D., Garner, T.R. and Flemming, A.J., 2010. Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA. Journal of Hazardous Materials, 178(1-3), pp. 906-916.  [https://doi.org/10.1016/j.jhazmat.2010.02.024 DOI: 10.1016/j.jhazmat.2010.02.024]</ref><ref name="Rak2008">Rak, A., Maly, M.E., Tracey, G., 2008. A Guide to Screening Level Ecological Risk Assessment, TG-090801. Tri-Services Ecological Risk Assessment Working Group (TSERAWG), U.S. Army Biological Technical Assistance Group (BTAG), Aberdeen Proving Ground, MD. 26 pp[https://usaphcapps.amedd.army.mil/erawg/SLERA.pdf Free Download]&nbsp;&nbsp; [[Media: Rak2008.pdf | Report.pdf]]</ref><ref name="USEPA2001">US Environmental Protection Agency (USEPA), 2001. ECO Update. The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments. EPA 540/F-01/014. Washington, D.C. [https://www.epa.gov/sites/default/files/2015-09/documents/slera0601.pdf  Website]&nbsp;&nbsp; [[Media: EPA 540_F-01_014.pdf  | Report.pdf]]</ref>.
+
Modeling has indicated that peat moss amended with crude soybean oil would significantly reduce the flux of dissolved TNT, RDX, and HMX through the vadose zone to groundwater compared to a non-treated soil (see [https://serdp-estcp.mil/projects/details/20e2f05c-fd50-4fd3-8451-ba73300c7531 ESTCP ER-200434]). The technology was validated in field soil plots, showing a greater than 500-fold reduction in the flux of dissolved RDX from macroscale Composition B detonation residues compared to a non-treated control plot<ref name="FullerEtAl2009"/>. Laboratory testing and modeling indicated that the addition of soybean oil increased the biotransformation rates of RDX and HMX at least 10-fold compared to rates observed with peat moss alone<ref name="SchaeferEtAl2005"/>. Subsequent experiments also demonstrated the effectiveness of the amended peat moss material for stimulating perchlorate transformation when added to a highly contaminated soil (Fuller et al., unpublished data).  These previous findings clearly demonstrate the effectiveness of peat-based materials for mitigating transport of both organic and inorganic energetic compounds through soil to groundwater.  
  
The analysis is often semi-quantitative, and typically includes comparisons of various chemical and physical sediment conditions to threshold limits established in national or international regulations or by generally accepted scientific interpretations. US technical guidance encourages the comparison of contaminant measurements in water, sediment, or soil to National Oceanographic and Atmospheric Administration (NOAA) sediment screening quick reference tables, or SQuiRT cards, which list quality guidelines from a range of sources, based on differing narrative intent<ref name="Buchman2008">Buchman, M.F., 2008. Screening Quick Reference Tables (SQuiRTs), NOAA OR&R Report 08-1. National Oceanographic and Atmospheric Administration (NOAA), Coastal Protection and Restoration Protection Division. 34 pp. [https://repository.library.noaa.gov/view/noaa/9327  website]&nbsp;&nbsp; [[Media: SQuiRTs2008.pdf | Report.pdf]]</ref>.
+
===Biochar===
 +
Recent reports have highlighted additional materials that, either alone, or in combination with electron donors such as peat moss and soybean oil, may further enhance the sorption and degradation of surface runoff contaminants, including both legacy energetics and [[Wikipedia: Insensitive_munition#Insensitive_high_explosives | insensitive high explosives (IHE)]].  For instance, [[Wikipedia: Biochar | biochar]], a type of black carbon, has been shown to not only sorb a wide range of organic and inorganic contaminants including MCs<ref>Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, pp. 19-33. [https://doi.org/10.1016/j.chemosphere.2013.10.071 doi: 10.1016/j.chemosphere.2013.10.071]</ref><ref>Mohan, D., Sarswat, A., Ok, Y.S., Pittman, C.U., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, pp. 191-202. [https://doi.org/10.1016/j.biortech.2014.01.120 doi: 10.1016/j.biortech.2014.01.120]</ref><ref>Oh, S.-Y., Seo, Y.-D., Jeong, T.-Y., Kim, S.-D., 2018. Sorption of Nitro Explosives to Polymer/Biomass-Derived Biochar. Journal of Environmental Quality, 47(2), pp. 353-360. [https://doi.org/10.2134/jeq2017.09.0357 doi: 10.2134/jeq2017.09.0357]</ref><ref>Xie, T., Reddy, K.R., Wang, C., Yargicoglu, E., Spokas, K., 2015. Characteristics and Applications of Biochar for Environmental Remediation: A Review. Critical Reviews in Environmental Science and Technology, 45(9), pp. 939-969. [https://doi.org/10.1080/10643389.2014.924180 doi: 10.1080/10643389.2014.924180]</ref>, but also to facilitate their degradation<ref>Oh, S.-Y., Cha, D.K., Kim, B.-J., Chiu, P.C., 2002. Effect of adsorption to elemental iron on the transformation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in solution. Environmental Toxicology and Chemistry, 21(7), pp. 1384-1389. [https://doi.org/10.1002/etc.5620210708 doi: 10.1002/etc.5620210708]</ref><ref>Ye, J., Chiu, P.C., 2006. Transport of Atomic Hydrogen through Graphite and its Reaction with Azoaromatic Compounds. Environmental Science and Technology, 40(12), pp. 3959-3964. [https://doi.org/10.1021/es060038x doi: 10.1021/es060038x]</ref><ref name="OhChiu2009">Oh, S.-Y., Chiu, P.C., 2009. Graphite- and Soot-Mediated Reduction of 2,4-Dinitrotoluene and Hexahydro-1,3,5-trinitro-1,3,5-triazine. Environmental Science and Technology, 43(18), pp. 6983-6988. [https://doi.org/10.1021/es901433m doi: 10.1021/es901433m]</ref><ref name="OhEtAl2013">Oh, S.-Y., Son, J.-G., Chiu, P.C., 2013. Biochar-mediated reductive transformation of nitro herbicides and explosives. Environmental Toxicology and Chemistry, 32(3), pp. 501-508. [https://doi.org/10.1002/etc.2087 doi: 10.1002/etc.2087]&nbsp;&nbsp; [[Media: OhEtAl2013.pdf | Open Access Article.pdf]]</ref><ref name="XuEtAl2010">Xu, W., Dana, K.E., Mitch, W.A., 2010. Black Carbon-Mediated Destruction of Nitroglycerin and RDX by Hydrogen Sulfide. Environmental Science and Technology, 44(16), pp. 6409-6415. [https://doi.org/10.1021/es101307n doi: 10.1021/es101307n]</ref><ref>Xu, W., Pignatello, J.J., Mitch, W.A., 2013. Role of Black Carbon Electrical Conductivity in Mediating Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Transformation on Carbon Surfaces by Sulfides. Environmental Science and Technology, 47(13), pp. 7129-7136. [https://doi.org/10.1021/es4012367 doi: 10.1021/es4012367]</ref>. Depending on the source biomass and [[Wikipedia: Pyrolysis| pyrolysis]] conditions, biochar can possess a high [[Wikipedia: Specific surface area | specific surface area]] (on the order of several hundred m<small><sup>2</sup></small>/g)<ref>Zhang, J., You, C., 2013. Water Holding Capacity and Absorption Properties of Wood Chars. Energy and Fuels, 27(5), pp. 2643-2648. [https://doi.org/10.1021/ef4000769 doi: 10.1021/ef4000769]</ref><ref>Gray, M., Johnson, M.G., Dragila, M.I., Kleber, M., 2014. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, pp. 196-205. [https://doi.org/10.1016/j.biombioe.2013.12.010 doi: 10.1016/j.biombioe.2013.12.010]</ref> and hence a high sorption capacity.  Biochar and other black carbon also exhibit especially high affinity for [[Wikipedia: Nitro compound | nitroaromatic compounds (NACs)]] including TNT and 2,4-dinitrotoluene (DNT)<ref>Sander, M., Pignatello, J.J., 2005. Characterization of Charcoal Adsorption Sites for Aromatic Compounds:  Insights Drawn from Single-Solute and Bi-Solute Competitive Experiments. Environmental Science and Technology, 39(6), pp. 1606-1615. [https://doi.org/10.1021/es049135l doi: 10.1021/es049135l]</ref><ref name="ZhuEtAl2005">Zhu, D., Kwon, S., Pignatello, J.J., 2005. Adsorption of Single-Ring Organic Compounds to Wood Charcoals Prepared Under Different Thermochemical Conditions. Environmental Science and Technology 39(11), pp. 3990-3998. [https://doi.org/10.1021/es050129e doi: 10.1021/es050129e]</ref><ref name="ZhuPignatello2005">Zhu, D., Pignatello, J.J., 2005. Characterization of Aromatic Compound Sorptive Interactions with Black Carbon (Charcoal) Assisted by Graphite as a Model. Environmental Science and Technology, 39(7), pp. 2033-2041. [https://doi.org/10.1021/es0491376 doi: 10.1021/es0491376]</ref>. This is due to the strong [[Wikipedia: Pi-interaction | ''&pi;-&pi;'' electron donor-acceptor interactions]] between electron-rich graphitic domains in black carbon and the electron-deficient aromatic ring of the NAC<ref name="ZhuEtAl2005"/><ref name="ZhuPignatello2005"/>. These characteristics make biochar a potentially effective, low cost, and sustainable sorbent for removing MC and other contaminants from surface runoff and retaining them for subsequent degradation ''in situ''.
  
The screening level approach is intended to minimize the chances of concluding that there is no risk when, in fact, risk may exist. Thus, the results of an SLRA may indicate contaminants or sediments in certain locations in the original study area initially thought to be of concern are acceptable (i.e., contaminant levels are below threshold levels), or that contaminant levels are high enough to indicate immediate action without further assessment (e.g., contaminant levels are well above probable-effects guidelines). In other cases, or at other locations, SLRA may indicate the need for further examination. Further study may apply site-specific, rather than generic and conservative assumptions, to reduce uncertainty.  
+
Furthermore, black carbon such as biochar can promote abiotic and microbial transformation reactions by facilitating electron transfer.  That is, biochar is not merely a passive sorbent for contaminants, but also a redox mediator for their degradation.  Biochar can promote contaminant degradation through two different mechanisms: electron conduction and electron storage<ref>Sun, T., Levin, B.D.A., Guzman, J.J.L., Enders, A., Muller, D.A., Angenent, L.T., Lehmann, J., 2017. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, 8, Article 14873. [https://doi.org/10.1038/ncomms14873 doi: 10.1038/ncomms14873]&nbsp;&nbsp; [[Media: SunEtAl2017.pdf | Open Access Article.pdf]]</ref>.  
  
===Detailed Risk Assessment===
+
First, the microscopic graphitic regions in biochar can adsorb contaminants like NACs strongly, as noted above, and also conduct reducing equivalents such as electrons and atomic hydrogen to the sorbed contaminants, thus promoting their reductive degradation.  This catalytic process has been demonstrated for TNT, DNT, RDX, HMX, and [[Wikipedia: Nitroglycerin | nitroglycerin]]<ref>Oh, S.-Y., Cha, D.K., Chiu, P.C., 2002. Graphite-Mediated Reduction of 2,4-Dinitrotoluene with Elemental Iron. Environmental Science and Technology, 36(10), pp. 2178-2184. [https://doi.org/10.1021/es011474g doi: 10.1021/es011474g]</ref><ref>Oh, S.-Y., Cha, D.K., Kim, B.J., Chiu, P.C., 2004. Reduction of Nitroglycerin with Elemental Iron:  Pathway, Kinetics, and Mechanisms. Environmental Science and Technology, 38(13), pp. 3723-3730. [https://doi.org/10.1021/es0354667 doi: 10.1021/es0354667]</ref><ref>Oh, S.-Y., Cha, D.K., Kim, B.J., Chiu, P.C., 2005. Reductive transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, and methylenedinitramine with elemental iron. Environmental Toxicology and Chemistry, 24(11), pp. 2812-2819. [https://doi.org/10.1897/04-662R.1 doi: 10.1897/04-662R.1]</ref><ref name="OhChiu2009"/><ref name="XuEtAl2010"/> and is expected to occur also for IHE including DNAN and NTO.  
Detailed sediment risk assessment is conducted when SLRA results indicate one or more sediment contaminants exceed background conditions or regulatory threshold limits. For some contaminants, such as the dioxins and other persistent, bioaccumulative, and toxic substances (PBTs), technical guidance may mandate further examination, regardless of whether threshold levels are exceeded<ref name="Solomon2013">Solomon, K., Matthies, M., and Vighi, M., 2013. Assessment of PBTs in the European Union: a critical assessment of the proposed evaluation scheme with reference to plant protection products. Environmental Sciences Europe, 25(1), pp. 1-17. [https://doi.org/10.1186/2190-4715-25-10 DOI: 10.1186/2190-4715-25-10]&nbsp;&nbsp; [https://enveurope.springeropen.com/articles/10.1186/2190-4715-25-10 Open Access Article]</ref><ref name="Matthies2016">Matthies, M., Solomon, K., Vighi, M., Gilman, A. and Tarazona, J.V., 2016. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Environmental Science: Processes and Impacts, 18(9), pp. 1114-1128. [https://doi.org/10.1039/C6EM00311G DOI: 10.1039/C6EM00311G]</ref>. Detailed sediment risk assessment typically follows a three-step framework similar to that described for ecological risk assessment - problem formulation, exposure analysis, and risk characterization<ref name="Suter2008">Suter, G.W., 2008. Ecological Risk Assessment in the United States Environmental Protection Agency: A Historical Overview. Integrated Environmental Assessment And Management, 4(3), pp. 285-289. [https://doi.org/10.1897/IEAM_2007-062.1 DOI: 10.1897/IEAM_2007-062.1]&nbsp;&nbsp; Free download from: [https://bioone.org/journals/integrated-environmental-assessment-and-management/volume-4/issue-3/IEAM_2007-062.1/Ecological-Risk-Assessment-in-the-United-States-Environmental-Protection-Agency/10.1897/IEAM_2007-062.1.pdf?casa_token=ieq3Cnc-YdIAAAAA:_MH-gpnwpJKvZSV2Qew43Y4ocdgADq1HvugpvmrblcGONMJgvIjYB52zQnXn_oAUW0gTy5GAkfY BioOne]</ref>.
 
  
US sediment management guidance describes a detailed risk assessment process similar to that followed for US ecological risk assessment<ref name="USEPA2005"/>. The first step is problem formulation. It involves defining chemical and physical conditions, delineating the spatial footprint of the sediment area to be examined, and identifying the human uses and ecological features of the sediment. Historical data are included in this initial step to better understand the results of biota, sediment, and water sampling as well as laboratory toxicity testing results. The SLRA is often included as a part of problem formulation.
+
Second, biochar contains in its structure abundant redox-facile functional groups such as [[Wikipedia: Quinone | quinones]] and [[Wikipedia: Hydroquinone | hydroquinones]], which are known to accept and donate electrons reversibly.  Depending on the biomass and pyrolysis temperature, certain biochar can possess a rechargeable electron storage capacity (i.e., reversible electron accepting and donating capacity) on the order of several millimoles e<small><sup>–</sup></small>/g<ref>Klüpfel, L., Keiluweit, M., Kleber, M., Sander, M., 2014. Redox Properties of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science and Technology, 48(10), pp. 5601-5611. [https://doi.org/10.1021/es500906d doi: 10.1021/es500906d]</ref><ref>Prévoteau, A., Ronsse, F., Cid, I., Boeckx, P., Rabaey, K., 2016. The electron donating capacity of biochar is dramatically underestimated. Scientific Reports, 6, Article 32870. [https://doi.org/10.1038/srep32870 doi: 10.1038/srep32870]&nbsp;&nbsp; [[Media: PrevoteauEtAl2016.pdf | Open Access Article.pdf]]</ref><ref>Xin, D., Xian, M., Chiu, P.C., 2018. Chemical methods for determining the electron storage capacity of black carbon. MethodsX, 5, pp. 1515-1520. [https://doi.org/10.1016/j.mex.2018.11.007 doi: 10.1016/j.mex.2018.11.007]&nbsp;&nbsp; [[Media: XinEtAl2018.pdf | Open Access Article.pdf]]</ref>. This means that when "charged", biochar can provide electrons for either abiotic or biotic degradation of reducible compounds such as MC. The abiotic reduction of DNT and RDX mediated by biochar has been demonstrated<ref name="OhEtAl2013"/> and similar reactions are expected to occur for DNAN and NTO as well. Recent studies have shown that the electron storage capacity of biochar is also accessible to microbes. For example, soil bacteria such as [[Wikipedia: Geobacter | ''Geobacter'']] and [[Wikipedia: Shewanella | ''Shewanella'']] species can utilize oxidized (or "discharged") biochar as an electron acceptor for the oxidation of organic substrates such as lactate and acetate<ref>Kappler, A., Wuestner, M.L., Ruecker, A., Harter, J., Halama, M., Behrens, S., 2014. Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science and Technology Letters, 1(8), pp. 339-344. [https://doi.org/10.1021/ez5002209 doi: 10.1021/ez5002209]</ref><ref name="SaquingEtAl2016">Saquing, J.M., Yu, Y.-H., Chiu, P.C., 2016. Wood-Derived Black Carbon (Biochar) as a Microbial Electron Donor and Acceptor. Environmental Science and Technology Letters, 3(2), pp. 62-66. [https://doi.org/10.1021/acs.estlett.5b00354 doi: 10.1021/acs.estlett.5b00354]</ref> and reduced (or "charged") biochar as an electron donor for the reduction of nitrate<ref name="SaquingEtAl2016"/>. This is significant because, through microbial access of stored electrons in biochar, contaminants that do not sorb strongly to biochar can still be degraded.  
  
The second step is exposure analysis. This step includes the identification of pathways by which human and aquatic organisms might directly or indirectly contact contaminants in the sediment. The exposure route (i.e., ingestion, dermal, or inhalation of particulates or gaseous emissions) and both the frequency and duration of contact (i.e., hourly, daily, or seasonally) are determined for each contaminant exposure pathway and human and ecological receptor. The environmental fate of the contaminant, factors affecting uptake, and the overall exposure dose are included in the calculation of the level of contaminant exposure. The exposure analysis also includes an effects assessment, whereby the biological response and associated level required to manifest different biological responses are determined for each contaminant.
+
Similar to nitrate, perchlorate and other relatively water-soluble energetic compounds (e.g., NTO and NQ) may also be similarly transformed using reduced biochar as an electron donor.  Unlike other electron donors, biochar can be recharged through biodegradation of organic substrates<ref name="SaquingEtAl2016"/> and thus can serve as a long-lasting sorbent and electron repository in soil. Similar to peat moss, the high porosity and surface area of biochar not only facilitate contaminant sorption but also create anaerobic reducing microenvironments in its inner pores, where reductive degradation of energetic compounds can take place.
  
The third step is risk-characterization. It involves calculating the risks for each human and ecological receptor posed by each sediment contaminant, as well as the cumulative risk associated with the combined exposure to all contaminants exerting similar biological effects. An uncertainty analysis is often included in this step of the risk assessment to convey where knowledge or data are lacking regarding the presence of the contaminant in the sediment, the biological response associated with exposure to the contaminant, or the behavior of the receptor with respect to contact with the sediment. A sensitivity analysis also may be conducted to convey the range of exposures (lowest, typical, and worst-case) and risks associated with changes in key assumptions and parameter values used in the exposure calculations and effects assessment.
+
===Other Sorbents===
 
+
Chitin and unmodified cellulose were predicted by [[Wikipedia: Density functional theory | Density Functional Theory]] methods to be favorable for absorption of NTO and NQ, as well as the legacy explosives<ref>Todde, G., Jha, S.K., Subramanian, G., Shukla, M.K., 2018. Adsorption of TNT, DNAN, NTO, FOX7, and NQ onto Cellulose, Chitin, and Cellulose Triacetate. Insights from Density Functional Theory Calculations. Surface Science, 668, pp. 54-60. [https://doi.org/10.1016/j.susc.2017.10.004 doi: 10.1016/j.susc.2017.10.004]&nbsp;&nbsp; [[Media: ToddeEtAl2018.pdf | Open Access Manuscript.pdf]]</ref>. Cationized cellulosic materials (e.g., cotton, wood shavings) have been shown to effectively remove negatively charged energetics like perchlorate and NTO from solution<ref name="FullerEtAl2022">Fuller, M.E., Farquharson, E.M., Hedman, P.C., Chiu, P., 2022. Removal of munition constituents in stormwater runoff: Screening of native and cationized cellulosic sorbents for removal of insensitive munition constituents NTO, DNAN, and NQ, and legacy munition constituents HMX, RDX, TNT, and perchlorate. Journal of Hazardous Materials, 424(C), Article 127335. [https://doi.org/10.1016/j.jhazmat.2021.127335 doi: 10.1016/j.jhazmat.2021.127335]&nbsp;&nbsp; [[Media: FullerEtAl2022.pdf | Open Access Manuscript.pdf]]</ref>. A substantial body of work has shown that modified cellulosic biopolymers can also be effective sorbents for removing metals from solution<ref>Burba, P., Willmer, P.G., 1983. Cellulose: a biopolymeric sorbent for heavy-metal traces in waters. Talanta, 30(5), pp. 381-383. [https://doi.org/10.1016/0039-9140(83)80087-3 doi: 10.1016/0039-9140(83)80087-3]</ref><ref>Brown, P.A., Gill, S.A., Allen, S.J., 2000. Metal removal from wastewater using peat. Water Research, 34(16), pp. 3907-3916. [https://doi.org/10.1016/S0043-1354(00)00152-4 doi: 10.1016/S0043-1354(00)00152-4]</ref><ref>O’Connell, D.W., Birkinshaw, C., O’Dwyer, T.F., 2008. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99(15), pp. 6709-6724. [https://doi.org/10.1016/j.biortech.2008.01.036 doi: 10.1016/j.biortech.2008.01.036]</ref><ref>Wan Ngah, W.S., Hanafiah, M.A.K.M., 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99(10), pp. 3935-3948. [https://doi.org/10.1016/j.biortech.2007.06.011 doi: 10.1016/j.biortech.2007.06.011]</ref> and therefore will also likely be applicable for some of the metals that may be found in surface runoff at firing ranges.
==Key Considerations==
 
===Stakeholder Engagement===
 
Stakeholder involvement is widely acknowledged as an important element of [[Wikipedia: Dredging | dredged]] material management<ref name="Collier2014">Collier, Z.A., Bates, M.E., Wood, M.D. and Linkov, I., 2014. Stakeholder engagement in dredged material management decisions. Science of the Total Environment, 496, pp. 248-256. [https://doi.org/10.1016/j.scitotenv.2014.07.044 DOI: 10.1016/j.scitotenv.2014.07.044] Free download from: [https://www.researchgate.net/profile/Matthew-Bates-9/publication/264460412_Stakeholder_Engagement_in_Dredged_Material_Management_Decisions/links/5a9d50fbaca2721e3f32adea/Stakeholder-Engagement-in-Dredged-Material-Management-Decisions.pdf ResearchGate]</ref>, sediment remediation<ref name="Oen2010">Oen, A.M.P., Sparrevik, M., Barton, D.N., Nagothu, U.S., Ellen, G.J., Breedveld, G.D., Skei, J. and Slob, A., 2010. Sediment and society: an approach for assessing management of contaminated sediments and stakeholder involvement in Norway. Journal of Soils and Sediments, 10(2), pp. 202-208. [https://doi.org/10.1007/s11368-009-0182-x DOI: 10.1007/s11368-009-0182-x]</ref>, and other environmental and sediment related activities<ref name="Gerrits2004">Gerrits, L. and Edelenbos, J., 2004. Management of Sediments Through Stakeholder Involvement. Journal of Soils and Sediments, 4(4), pp. 239-246. [https://doi.org/10.1007/BF02991120 DOI: 10.1007/BF02991120]</ref><ref name="Braun2019">Braun, A.B., da Silva Trentin, A.W., Visentin, C. and Thomé, A., 2019. Sustainable remediation through the risk management perspective and stakeholder involvement: A systematic and bibliometric view of the literature. Environmental Pollution, 255(1), p.113221. [https://doi.org/10.1016/j.envpol.2019.113221 DOI: 10.1016/j.envpol.2019.113221]</ref>.
 
  
Sediment management, particularly at the river basin scale, involves a wide variety of different environmental, governmental, and societal issues<ref name="Liu2018">Liu, C., Walling, D.E. and He, Y., 2018. The International Sediment Initiative case studies of sediment problems in river basins and their management. International Journal of Sediment Research, 33(2), pp. 216-219.  [https://doi.org/10.1016/j.ijsrc.2017.05.005 DOI: 10.1016/j.ijsrc.2017.05.005]  Free download from: [https://www.researchgate.net/profile/Cheng-Liu-43/publication/317032034_Review_The_International_Sediment_Initiative_Case_Studies_of_sediment_problems_in_river_basins_and_their_management/links/5f4f37d2299bf13a319703df/Review-The-International-Sediment-Initiative-Case-Studies-of-sediment-problems-in-river-basins-and-their-management.pdf ResearchGate]</ref>. Incorporating these different views, interests, and perspectives into a form that builds consensus for whatever actions and goals are in mind (e.g., commercial ports and shipping, navigation, flood protection, or habitat restoration) necessitates a formal stakeholder engagement process<ref name="Slob2008">Slob, A.F.L., Ellen, G.J. and Gerrits, L., 2008. Sediment management and stakeholder involvement. In: Sustainable Management of Sediment Resources, Vol. 4: Sediment Management at the River Basin Scale, Owens, P.N. (ed.), pp. 199-216. Elsevier.  [https://doi.org/10.1016/S1872-1990(08)80009-8 DOI: 10.1016/S1872-1990(08)80009-8]</ref>.
+
==Technology Evaluation==
 +
Based on the properties of the target munition constituents, a combination of materials was expected to yield the best results to facilitate the sorption and subsequent biotic and abiotic degradation of the contaminants.
  
Results from a three-year (2008-2010) [https://www.ngi.no/eng/Projects/Sediment-and-society Sediment and Society] research project funded by the Norwegian Research Council point to three important challenges that must be resolved for successful stakeholder engagement: (1) how to include people who have important management information and local knowledge, but not much influence in the decision-making process; (2) how to secure resources to ensure participation and (3) how to engage and motivate stakeholders to participate early in the sediment remediation planning process<ref name="Oen2010"/>.
+
===Sorbents===
 +
{| class="wikitable" style="margin-right: 30px; margin-left: auto; float:left; text-align:center;"
 +
|+Table 1. [[Wikipedia: Freundlich equation | Freundlich]] and [[Wikipedia: Langmuir adsorption model | Langmuir]] adsorption parameters for insensitive and legacy explosives
 +
|-
 +
! rowspan="2" | Compound
 +
! colspan="5" | Freundlich
 +
! colspan="5" | Langmuir
 +
|-
 +
! <small>Parameter</small> !! Peat !! <small>CAT</small> Pine !! <small>CAT</small> Burlap !! <small>CAT</small> Cotton !! <small>Parameter</small> !! Peat !! <small>CAT</small> Pine !! <small>CAT</small> Burlap !! <small>CAT</small> Cotton
 +
|-
 +
| colspan="12" style="background-color:white;" |
 +
|-
 +
! rowspan="3" | HMX
 +
! ''K<sub>f</sub>''
 +
| 0.08 +/- 0.00 || -- || -- || --
 +
! ''q<sub>m</sub>'' <small>(mg/g)</small>
 +
| 0.29 +/- 0.04 || -- || -- || --
 +
|-
 +
! ''n''
 +
| 1.70 +/- 0.18 || -- || -- || --
 +
! ''b'' <small>(L/mg)</small>
 +
| 0.39 +/- 0.09 || -- || -- || --
 +
|-
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.91 || -- || -- || --
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.93 || -- || -- || --
 +
|-
 +
| colspan="12" style="background-color:white;" |
 +
|-
 +
! rowspan="3" | RDX
 +
! ''K<sub>f</sub>''
 +
| 0.11 +/- 0.02 || -- || -- || --
 +
! ''q<sub>m</sub>'' <small>(mg/g)</small>
 +
| 0.38 +/- 0.05 || -- || -- || --
 +
|-
 +
! ''n''
 +
| 2.75 +/- 0.63 || -- || -- || --
 +
! ''b'' <small>(L/mg)</small>
 +
| 0.23 +/- 0.08 || -- || -- || --
 +
|-
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.69 || -- || -- || --
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.69 || -- || -- || --
 +
|-
 +
| colspan="12" style="background-color:white;" |
 +
|-
 +
! rowspan="3" | TNT
 +
! ''K<sub>f</sub>''
 +
| 1.21 +/- 0.15 || 1.02 +/- 0.04 || 0.36 +/- 0.02 || --
 +
! ''q<sub>m</sub>'' <small>(mg/g)</small>
 +
| 3.63 +/- 0.18 || 1.26 +/- 0.06 || -- || --
 +
|-
 +
! ''n''
 +
| 2.78 +/- 0.67 || 4.01 +/- 0.44 || 1.59 +/- 0.09 || --
 +
! ''b'' <small>(L/mg)</small>
 +
| 0.89 +/- 0.13 || 0.76 +/- 0.10 || -- || --
 +
|-
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.81 || 0.93 || 0.98 || --
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.97 || 0.97 || -- || --
 +
|-
 +
| colspan="12" style="background-color:white;" |
 +
|-
 +
! rowspan="3" | NTO
 +
! ''K<sub>f</sub>''
 +
| -- || 0.94 +/- 0.05 || 0.41 +/- 0.05 || 0.26 +/- 0.06
 +
! ''q<sub>m</sub>'' <small>(mg/g)</small>
 +
| -- || 4.07 +/- 0.26 || 1.29 +/- 0.12 || 0.83 +/- .015
 +
|-
 +
! ''n''
 +
| -- || 1.61 +/- 0.11 || 2.43 +/- 0.41 || 2.53 +/- 0.76
 +
! ''b'' <small>(L/mg)</small>
 +
| -- || 0.30 +/- 0.04 || 0.36 +/- 0.08 || 0.30 +/- 0.15
 +
|-
 +
! ''r<sup><small>2</small></sup>''
 +
| -- || 0.97 || 0.82 || 0.57
 +
! ''r<sup><small>2</small></sup>''
 +
| -- || 0.99 || 0.89 || 0.58
 +
|-
 +
| colspan="12" style="background-color:white;" |
 +
|-
 +
! rowspan="3" | DNAN
 +
! ''K<sub>f</sub>''
 +
| 0.38 +/- 0.05 || 0.01 +/- 0.01 || -- || --
 +
! ''q<sub>m</sub>'' <small>(mg/g)</small>
 +
| 2.57 +/- 0.33 || -- || -- || --
 +
|-
 +
! ''n''
 +
| 1.71 +/- 0.20 || 0.70 +/- 0.13 || -- || --
 +
! ''b'' <small>(L/mg)</small>
 +
| 0.13 +/- 0.03 || -- || -- || --
 +
|-
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.89 || 0.76 || -- || --
 +
! ''r<sup><small>2</small></sup>''
 +
| 0.92 || -- || -- || --
 +
|-
 +
| colspan="12" style="background-color:white;" |
 +
|-
 +
! rowspan="3" | ClO<sub>4</sup>
 +
! ''K<sub>f</sub>''
 +
| -- || 1.54 +/- 0.06 || 0.53 +/- 0.03 || --
 +
! ''q<sub>m</sub>'' <small>(mg/g)</small>
 +
| -- || 3.63 +/- 0.18 || 1.26 +/- 0.06 || --
 +
|-
 +
! ''n''
 +
| -- || 2.42 +/- 0.16 || 2.42 +/- 0.26 || --
 +
! ''b'' <small>(L/mg)</small>
 +
| -- || 0.89 +/- 0.13 || 0.76 +/- 0.10 || --
 +
|-
 +
! ''r<sup><small>2</small></sup>''
 +
| -- || 0.97 || 0.92 || --
 +
! ''r<sup><small>2</small></sup>''
 +
| -- || 0.97 || 0.97 || --
 +
|-
 +
| colspan="12" style="text-align:left; background-color:white;" |<small>Notes:</small><br /><big>'''--'''</big> <small>Indicates the algorithm failed to converge on the model fitting parameters, therefore there was no successful model fit.<br />'''CAT''' Indicates cationized material.</small>
 +
|}
  
===Conceptual Site Model===
+
The&nbsp;materials&nbsp;screened&nbsp;included [[Wikipedia: Sphagnum | ''Sphagnum'' peat moss]], primarily for sorption of HMX, RDX, TNT, and DNAN, as well as [[Wikipedia: Cationization of cotton | cationized cellulosics]] for removal of perchlorate and NTO. The cationized cellulosics that were examined included: pine sawdust, pine shavings, aspen shavings, cotton linters (fine, silky fibers which adhere to cotton seeds after ginning), [[Wikipedia: Chitin | chitin]], [[Wikipedia: Chitosan |  chitosan]], burlap (landscaping grade), [[Wikipedia: Coir | coconut coir]], raw cotton, raw organic cotton, cleaned raw cotton, cotton fabric, and commercially cationized fabrics.
The preparation of a conceptual site model (CSM) is a fundamental component of problem formulation and the first step in detailed sediment risk assessment. The CSM is a narrative and/or illustrative representation of the physical, chemical and biological processes that control the transport, migration and actual or potential impacts of sediment contamination to human and/or ecological receptors<ref name="NJDEP2019">New Jersey Department of Environmental Protection, 2019. Technical Guidance for Preparation and Submission of a Conceptual Site Model. Version 1.1. Site Remediation and Waste Management Program, Trenton, NJ. 46 pp. [https://www.nj.gov/dep/srp/guidance/srra/csm_tech_guidance.pdf Free download].</ref><ref name="USEPA2011">US Environmental Protection Agency, 2011. Guidance for the Development of Conceptual Models for a Problem Formulation Developed for Registration Review. Environmental Fate and Effects Division, Office of Pesticide Programs, Washington, D.C. [https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-development-conceptual-models-problem Website]</ref>. The CSM should include a “food web” because the aquatic food web is an important exposure pathway by which contaminants in the sediment reach humans and pelagic aquatic life<ref name="Arnot2004">Arnot, J.A. and Gobas, F.A., 2004. A Food Web Bioaccumulation Model for Organic Chemicals in Aquatic Ecosystems. Environmental Toxicology and Chemistry, 23(10), pp. 2343-2355.  [https://doi.org/10.1897/03-438 DOI: 10.1897/03-438]</ref>.
 
  
The CSM provides an early opportunity for critical examination of the interactions between sediment and the water column and the influence of groundwater inputs, surface runoff, and hydrodynamics. For example, there are situations where impacts in the aquatic food web can be driven by ongoing inputs to the water column from upstream sources, but mistakenly connected to polluted sediments. Other considerations included in a CSM can be socio-economic and include linkages to the ecosystem services provided by sediments<ref name="Broszeit2019">Broszeit, S., Beaumont, N.J., Hooper, T.L., Somerfield, P.J. and Austen, M.C., 2019. Developing conceptual models that link multiple ecosystem services to ecological research to aid management and policy, the UK marine example. Marine Pollution Bulletin, 141, pp.236-243.  [https://doi.org/10.1016/j.marpolbul.2019.02.051 DOI: 10.1016/j.marpolbul.2019.02.051]&nbsp;&nbsp; [https://www.sciencedirect.com/science/article/pii/S0025326X19301511/pdfft?md5=34993d6c3a57b6fb18a8b6329597fcb9&pid=1-s2.0-S0025326X19301511-main.pdf Open Access Article.]</ref><ref name="Wang2021">Wang, J., Lautz, L.S., Nolte, T.M., Posthuma, L., Koopman, K.R., Leuven, R.S. and Hendriks, A.J., 2021. Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. Journal of Environmental Management, 281, p. 111873.  [https://doi.org/10.1016/j.jenvman.2020.111873 DOI: 10.1016/j.jenvman.2020.111873]&nbsp;&nbsp; [https://www.sciencedirect.com/science/article/pii/S0301479720317989/pdfft?md5=daff5e94f8aed44ffce6508afef2308c&pid=1-s2.0-S0301479720317989-main.pdf  Open Access Article.]</ref>, or the social, economic and environmental impacts of sediment management alternatives. In such a case, when risk assessment seeks to compare risks of various management actions (including no action), the CSM can be termed a sustainability CSM, or SustCSM<ref name="McNally2020">McNally, A.D., Fitzpatrick, A.G., Harrison, D., Busey, A., and Apitz, S.E., 2020. Tiered approach to sustainability analysis in sediment remediation decision making. Remediation Journal, 31(1), pp. 29-44.  [https://doi.org/10.1002/rem.21661 DOI: 10.1002/rem.21661]&nbsp;&nbsp; [https://onlinelibrary.wiley.com/doi/epdf/10.1002/rem.21661 Open Access Article].</ref><ref name="Holland2011">Holland, K.S., Lewis, R.E., Tipton, K., Karnis, S., Dona, C., Petrovskis, E., and Hook, C., 2011. Framework for Integrating Sustainability Into Remediation Projects. Remediation Journal, 21(3), pp. 7-38. [https://doi.org/10.1002/rem.20288 DOI: 10.1002/rem.20288].</ref>. At a minimum, however, the purpose of the CSM is to illustrate the scope of the risk assessment and guide the quantification of exposure and risk.
+
As shown in Table 1<ref name="FullerEtAl2022"/>, batch sorption testing indicated that a combination of Sphagnum peat moss and cationized pine shavings provided good removal of both the neutral organic energetics (HMX, RDX, TNT, DNAN) as well as the negatively charged energetics (perchlorate, NTO).
  
===Environmental Fate===
+
===Slow Release Carbon Sources===
An important consideration in exposure analysis is the determination of the bioavailable fraction of the contaminant in the sediment. There are two considerations. First, the adverse condition may be buried deep enough in sediments to be below the biologically available zone; typically, conditions in sediment below a depth of 5 cm will not contact burrowing benthic organisms<ref name="Anderson2010">Anderson, R.H., Prues, A.G. and Kravitz, M.J., 2010. Determination of the biologically relevant sampling depth for terrestrial ecological risk assessments. Geoderma, 154(3-4), pp.336-339.  [https://doi.org/10.1016/j.geoderma.2009.11.004 DOI: 10.1016/j.geoderma.2009.11.004]</ref>. If there is no prospect for the adverse condition to come closer to the surface, then the risk assessment could conclude the risk of exposure is insignificant. The second consideration relates to chemistry and the factors involved in the binding to sediment particles or the chemical form of the substance in the sediment<ref name="Eggleton2004">Eggleton, J. and Thomas, K.V., 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30(7), pp. 973-980.  [https://doi.org/10.1016/j.envint.2004.03.001 DOI: 10.1016/j.envint.2004.03.001]</ref>. However, these assumptions should be examined in the context of [[Climate Change Primer | climate change]], and the likelihood of more frequent and extreme events, putting burial at risk, higher temperatures and changing biogeochemical conditions, which may alter environmental fate of contaminants, compared to historical studies.
+
{| class="wikitable" style="margin-right: 30px; margin-left: auto; float:left; text-align:center;"
 +
|+Table 2. Slow-release Carbon Sources
 +
|-
 +
! Material !! Abbreviation !! Commercial Source !! Notes
 +
|-
 +
| polylactic acid || PLA6 || [https://www.goodfellow.com/usa?srsltid=AfmBOoqEiqIbrvWb1Hn1Bc090efBUUfg6V4N3Vrn6ytajHMJR-FG1Ez- Goodfellow] || high molecular weight thermoplastic polyester
 +
|-
 +
| polylactic acid || PLA80 || [https://www.goodfellow.com/usa?srsltid=AfmBOoqEiqIbrvWb1Hn1Bc090efBUUfg6V4N3Vrn6ytajHMJR-FG1Ez- Goodfellow] || low molecular weight thermoplastic polyester
 +
|-
 +
| polyhydroxybutyrate || PHB || [https://www.goodfellow.com/usa?srsltid=AfmBOoqEiqIbrvWb1Hn1Bc090efBUUfg6V4N3Vrn6ytajHMJR-FG1Ez- Goodfellow] || bacterial polyester
 +
|-
 +
| polycaprolactone || PCL || [https://www.sarchemlabs.com/?hsa_acc=4540346154&hsa_cam=20281343997&hsa_grp&hsa_ad&hsa_src=x&hsa_tgt&hsa_kw&hsa_mt&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21209931835 Sarchem Labs] || biodegradable polyester
 +
|-
 +
| polybutylene succinate || BioPBS || [https://us.mitsubishi-chemical.com/company/performance-polymers/ Mitsubishi Chemical Performance Polymers] || compostable bio-based product
 +
|-
 +
| sucrose ester of fatty acids || SEFA SP10 || [https://www.sisterna.com/ Sisterna] || food and cosmetics additive
 +
|-
 +
| sucrose ester of fatty acids || SEFA SP70 || [https://www.sisterna.com/ Sisterna] || food and cosmetics additive
 +
|}
  
The above contaminant bioavailability considerations are important factors influencing assumptions in the risk assessment about contaminant exposure<ref name="Peijnenburg2020">Peijnenburg, W.J., 2020. Implementation of bioavailability in prospective and retrospective risk assessment of chemicals in soils and sediments. In: The Handbook of Environmental Chemistry, vol 100, Bioavailability of Organic Chemicals in Soil and Sediment, Ortega-Calvo, J.J., Parsons, J.R. (ed.s), pp.391-422. Springer.  [https://doi.org/10.1007/698_2020_516 DOI: 10.1007/698_2020_516]</ref><ref name="Ortega-Calvo2015">Ortega-Calvo, J.J., Harmsen, J., Parsons, J.R., Semple, K.T., Aitken, M.D., Ajao, C., Eadsforth, C., Galay-Burgos, M., Naidu, R., Oliver, R. and Peijnenburg, W.J., 2015. From Bioavailability Science to Regulation of Organic Chemicals. Environmental Science and Technology, 49, 10255−10264. [https://doi.org/10.1021/acs.est.5b02412 DOI: 10.1021/acs.est.5b02412]&nbsp;&nbsp; [https://pubs.acs.org/doi/pdf/10.1021/acs.est.5b02412 Open Access Article].</ref>. There have been recent advances in the use of sorbent amendments applied to contaminated sediments that alter sediment geochemistry, increase contaminant binding, and reduce contaminant exposure risks to people and the environment<ref name="Ghosh2011">Ghosh, U., Luthy, R.G., Cornelissen, G., Werner, D. and Menzie, C.A., 2011. In-situ sorbent amendments: a new direction in contaminated sediment management. Environmental Science and Technology, 45, 4, 1163–1168[https://doi.org/10.1021/es102694h DOI: 10.1021/es102694h]&nbsp;&nbsp; [https://pubs.acs.org/doi/pdf/10.1021/es102694h Open Access Article]</ref>. [[Passive Sampling of Sediments | Passive sampling techniques]] have emerged to quantify chemical binding to sediment and determine the freely dissolved concentration that is bioavailable.
+
A&nbsp;range&nbsp;of&nbsp;biopolymers&nbsp;widely used in the production of biodegradable plastics were screened for their ability to support aerobic and anoxic biodegradation of the target munition constituents. These compounds and their sources are listed in Table 2.   
  
===Assessment and Measurement Endpoints===
+
[[File: FullerFig3.png | thumb | 400 px | Figure 3. Schematic of interactions between biochar and munitions constituents]]
Assessment and measurement endpoints used in sediment risk assessment are comparable to those described in USEPA ecological risk assessment guidance<ref name="USEPA2005"/><ref name="USEPA1992">US Environmental Protection Agency (USEPA), 1992. Framework for Ecological Risk Assessment, EPA/630/R-92/001. Risk Assessment Forum, Washington DC. [[Media: EPA-630-R-92-001.pdf | Report.pdf]]</ref><ref name="USEPA1996">US Environmental Protection Agency (USEPA), 1996. Eco Update: Ecological Significance and Selection of Candidate Assessment Endpoints. EPA/540/F-95/037. Office of Solid Waste and Emergency Response, Washington DC. [[Media: EPA 540-F-95-037.pdf | Report.pdf]]</ref><ref name="USEPA1997b">US Environmental Protection Agency (USEPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments - Interim Final, EPA 540/R-97/006. Office of Solid Waste and Emergency Response, Washington DC. [[Media: EPA 540-R-97-006.pdf | Report.pdf]]</ref><ref name="USEPA1998">US Environmental Protection Agency (USEPA), 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F. Risk Assessment Forum, Washington DC. [[Media: EPA 630-R-95-002F.pdf | Report.pdf]]</ref>. A sediment risk assessment, and ecological risk assessments more broadly, must have clearly defined endpoints that are socially and biologically relevant, accessible to prediction and measurement, and susceptible to the hazard being assessed<ref name="USEPA1992"/>.
+
Multiple pure bacterial strains and mixed cultures were screened for their ability to utilize the solid biopolymers as a carbon source to support energetic compound transformation and degradation. Pure strains included the aerobic RDX degrader [[Wikipedia: Rhodococcus | ''Rhodococcus'']] species DN22 (DN22 henceforth)<ref name="ColemanEtAl1998">Coleman, N.V., Nelson, D.R., Duxbury, T., 1998. Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biology and Biochemistry, 30(8-9), pp. 1159-1167. [https://doi.org/10.1016/S0038-0717(97)00172-7 doi: 10.1016/S0038-0717(97)00172-7]</ref> and [[Wikipedia: Gordonia (bacterium)|''Gordonia'']] species KTR9 (KTR9 henceforth)<ref name="ColemanEtAl1998"/>, the anoxic RDX degrader [[Wikipedia: Pseudomonas fluorencens | ''Pseudomonas fluorencens'']] species I-C (I-C henceforth)<ref>Pak, J.W., Knoke, K.L., Noguera, D.R., Fox, B.G., Chambliss, G.H., 2000. Transformation of 2,4,6-Trinitrotoluene by Purified Xenobiotic Reductase B from Pseudomonas fluorescens I-C. Applied and Environmental Microbiology, 66(11), pp. 4742-4750. [https://doi.org/10.1128/AEM.66.11.4742-4750.2000 doi: 10.1128/AEM.66.11.4742-4750.2000]&nbsp;&nbsp; [[Media: PakEtAl2000.pdf | Open AccessArticle.pdf]]</ref><ref>Fuller, M.E., McClay, K., Hawari, J., Paquet, L., Malone, T.E., Fox, B.G., Steffan, R.J., 2009. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Applied Microbiology and Biotechnology, 84, pp. 535-544. [https://doi.org/10.1007/s00253-009-2024-6 doi: 10.1007/s00253-009-2024-6]&nbsp;&nbsp; [[Media: FullerEtAl2009.pdf | Open Access Manuscript]]</ref>, and the aerobic NQ degrader [[Wikipedia: Pseudomonas | ''Pseudomonas extremaustralis'']] species NQ5 (NQ5 henceforth)<ref>Kim, J., Fuller, M.E., Hatzinger, P.B., Chu, K.-H., 2024. Isolation and characterization of nitroguanidine-degrading microorganisms. Science of the Total Environment, 912, Article 169184. [https://doi.org/10.1016/j.scitotenv.2023.169184 doi: 10.1016/j.scitotenv.2023.169184]</ref>. Anaerobic mixed cultures were obtained from a membrane bioreactor (MBR) degrading a mixture of six explosives (HMX, RDX, TNT, NTO, NQ, DNAN), as well as perchlorate and nitrate<ref name="FullerEtAl2023">Fuller, M.E., Hedman, P.C., Chu, K.-H., Webster, T.S., Hatzinger, P.B., 2023. Evaluation of a sequential anaerobic-aerobic membrane bioreactor system for treatment of traditional and insensitive munitions constituents. Chemosphere, 340, Article 139887. [https://doi.org/10.1016/j.chemosphere.2023.139887 doi: 10.1016/j.chemosphere.2023.139887]</ref>. The results indicated that the slow-release carbon sources [[Wikipedia: Polyhydroxybutyrate | polyhydroxybutyrate (PHB)]], [[Wikipedia: Polycaprolactone | polycaprolactone (PCL)]], and [[Wikipedia: Polybutylene succinate | polybutylene succinate (BioPBS)]] were effective for supporting the biodegradation&nbsp;of&nbsp;the&nbsp;mixture&nbsp;of&nbsp;energetics.
  
Assessment endpoints for humans include both carcinogenic and noncarcinogenic effects. Due to their assumed higher levels of exposure, human receptors used in sediment risk assessment typically include recreational, commercial, and subsistence fishermen, i.e., people who might be at increased risk from eating fish or contacting the sediment or water on a regular basis such as indigenous peoples, immigrants from fishing cultures, and subsistence fishers who rely upon fish as a major source of protein. Special considerations are given to women of child-bearing age, pregnant women and young children. Assessment endpoints for ecological receptors focus on benthic organisms, resident fish, piscivorous and other predatory birds and marine mammals. Endpoints typically include mortality, reproductive success and population susceptibility to disease or similar adverse chronic conditions.
+
===Biochar===
 +
[[File: FullerFig4.png | thumb | left | 500 px | Figure 4. Composition of the columns during the sorption-biodegradation experiments]]
 +
[[File: FullerFig5.png | thumb | 500 px | Figure 5. Representative breakthrough curves of energetics during the second replication of the column sorption-biodegradation experiment]]
 +
The&nbsp;ability&nbsp;of&nbsp;biochar&nbsp;to sorb and abiotically reduce legacy and insensitive munition constituents, as well as biochar’s use as an electron donor for microbial biodegradation of energetic compounds was examined.  Batch experiments indicated that biochar was a reasonable sorbent for some of the energetics (RDX, DNAN), but could also serve as both an electron acceptor and an electron donor to facilitate abiotic (RDX, DNAN, NTO) and biotic (perchlorate) degradation (Figure 3)<ref>Xin, D., Giron, J., Fuller, M.E., Chiu, P.C., 2022. Abiotic reduction of 3-nitro-1,2,4-triazol-5-one (NTO), DNAN, and RDX by wood-derived biochars through their rechargeable electron storage capacity. Environmental Science: Processes and Impacts, 24(2), pp. 316-329. [https://doi.org/10.1039/D1EM00447F doi: 10.1039/D1EM00447F]&nbsp;&nbsp; [[Media: XinEtAl2022.pdf | Open Access Manuscript.pdf]]</ref>.
  
Measurement endpoints are related quantitatively to each assessment endpoint. Whenever practical, multiple measurement endpoints are chosen to provide additional lines of evidence for each assessment endpoint. For example, for humans, it might be possible to measure contaminant levels in both food items and human blood or tissue. For predatory fish, birds and mammals, it might be possible to measure contaminants in both prey and predator tissues. Measurement endpoints can be selected to assess non-chemical stressors as well, such as habitat alteration and water turbidity. Typically, measurement endpoints are compared to measurements at a reference site to ascertain the degree of departure from local natural or background conditions.
+
===Sorption-Biodegradation Column Experiments===
 +
The&nbsp;selected&nbsp;materials&nbsp;and&nbsp;cultures discussed above, along with a small amount of range soil and crushed oyster shell as a slow-release pH buffering agent, were packed into columns, and a steady flow of dissolved energetics was passed through the columns. The composition of the four columns is presented in Figure 4. The influent and effluent concentrations of the energetics was monitored over time. The column experiment was performed twice.  As seen in Figure 5, there was sustained almost complete removal of RDX and ClO<sub>4</sub><sup>-</sup>, and more removal of the other energetics in the bioactive columns compared to the sorption only columns, over the course of the experiments. For reference, 100 PV is approximately equivalent to three months of operation.  The higher effectiveness of sorption with biodegradation compared to sorption only is further illustrated in Figure 6, where the energetics mass removal in the bioactive columns was shown to be 2-fold (TNT) to 20-fold (RDX) higher relative to that observed in the sorption only column.  The mass removal of HMX and NQ were both over 40% higher with biochar added to the sorption with biodegradation treatment, although biochar showed little added benefit for&nbsp;removal&nbsp;of&nbsp;other&nbsp;energetics&nbsp;tested.
  
===Sediment Toxicity Testing===
+
===Trap and Treat Technology===
Sediment bioassays are an integral part of effects characterization when assessing the risks posed by contaminated sediments and developing sediment quality guidelines
+
[[File: FullerFig6.png | thumb | left | 400 px | Figure 6. Energetic mass removal relative to the sorption only removal during the column sorption-biodegradation experiments.  Dashed line given for reference to C1 removal = 1.]]
 +
These&nbsp;results&nbsp;provide&nbsp;a proof-of-concept for the further development of a passive and sustainable “trap-and-treat” technology for remediation of energetic compounds in stormwater runoff at military testing and training ranges.  At a given site, the stormwater runoff would need to be fully characterized with respect to key parameters (e.g., pH, major anions), and site specific treatability testing would be recommended to assure there was nothing present in the runoff that would reduce performance.  Effluent monitoring on a regular basis would also be needed (and would be likely be expected by state and local regulators) to assess performance decline over time.
  
==Cap Design and Materials for Habitat Restoration==
+
The components of the technology would be predominantly peat moss and cationized pine shavings, supplemented with biochar, ground oyster shell, the biopolymer carbon sources, and the bioaugmentation culturesThe entire mix would likely be emplaced in a concrete vault at the outflow end of the stormwater runoff retention basin at the contaminated siteThe deployed treatment system would have further design elements, such as a system to trap and retain suspended solids in the runoff in order to minimize clogging the matrixthe inside of the vault would be baffled to maximize the hydraulic retention time of the contaminated runoff. The biopolymer carbon sources and oyster shell may need be refreshed periodically (perhaps yearly) to maintain performanceHowever, a complete removal and replacement of the base media (peat moss, CAT pine) would not be advised, as that would lead to a loss&nbsp;of&nbsp;the&nbsp;acclimated&nbsp;biomass.
In addition to providing chemical isolation and containment, a cap can also be used to provide improvements for organisms by enhancing the habitat characteristics of the bottom substrate<ref name="Yozzo2004">Yozzo, D.J., Wilber, P. and Will, R.J., 2004. Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York–New Jersey Harbor. Journal of Environmental Management, 73(1), pp. 39-52[https://doi.org/10.1016/j.jenvman.2004.05.008 DOI: 10.1016/j.jenvman.2004.05.008]</ref><ref name="Zhang2016">Zhang, C., Zhu, M.Y., Zeng, G.M., Yu, Z.G., Cui, F., Yang, Z.Z. and Shen, L.Q., 2016. Active capping technology: a new environmental remediation of contaminated sediment. Environmental Science and Pollution Research, 23(5), pp.4370-4386[https://doi.org/10.1007/s11356-016-6076-8 DOI: 10.1007/s11356-016-6076-8]</ref><ref name="Vlassopoulos2017"/>.  Often, contaminated sediment environments are degraded for a variety of reasons in addition to the toxic constituentsOne way to overcome this is to provide both a habitat layer and chemical isolation or contaminant capping layer. Figure 2 illustrates just such a design providing a more appropriate habitat enhancing substrate, in this case by incorporation additional organic material, vegetation and debris, which is often used by fish species for protection, into the surface layer. In a high energy environment, it should be recognized that it may not be possible to keep a suitable habitat layer in place during high flow eventsThis would be true of suitable habitat that had developed naturally as well as a constructed habitat layer and it is presumed that if such a habitat is the normal condition of the waterbody that it will recover over time between such high flow events.
 
  
 
==Summary==
 
==Summary==
Clean substrate can be placed at the sediment-water interface for the purposes of reducing exposure to and risk from contaminants in the sediments.  The cap can consist of simple materials such as sand designed to physically stabilize contaminated sediments and separate the benthic community from those contaminants or may include other materials designed to sequester contaminants even under adverse conditions including strong groundwater upwelling or highly mobile contaminantsThe surface of a cap may be designed of coarse material such as gravel or cobble to be stable under high flow events or designed to be more appropriate habitat for benthic and aquatic organisms.  As a result of its flexibility, simplicity and low cost relative to its effectiveness, capping is one of the most prevalent remedial technologies for sediments.  
+
Novel&nbsp;sorbents&nbsp;and&nbsp;slow-release carbon sources can be an effective way to promote the sorption and biodegradation of a range of legacy and insensitive munition constituents from surface runoff, and the added benefits of biochar for both sorption and biotic and abiotic degradation of these compounds was demonstratedThese results establish a foundation for a passive, sustainable surface runoff treatment technology for both active and&nbsp;inactive&nbsp;military&nbsp;ranges.
  
 
==References==
 
==References==
Line 91: Line 233:
  
 
==See Also==
 
==See Also==
 +
*[https://serdp-estcp.mil/projects/details/10760fd6-fb55-4515-a629-f93c555a92f0/er-1689-project-overview Fate and Transport of Colloidal Energetic Residues, SERDP Project ER-1689]
 +
*[https://serdp-estcp.mil/projects/details/20e2f05c-fd50-4fd3-8451-ba73300c7531/er-200434-project-overview In Place Soil Treatments for Prevention of Explosives Contamination, ESTCP Project ER-200434]

Latest revision as of 20:19, 4 November 2025

Thermal Conduction Heating for Treatment of PFAS-Impacted Soil

Removal of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) compounds from impacted soils is challenging due to the modest volatility and varying properties of most PFAS compounds. Thermal treatment technologies have been developed for treatment of semi-volatile compounds in soils such as dioxins, furans, poly-aromatic hydrocarbons and poly-chlorinated biphenyls at temperatures near 325°C. In controlled bench-scale testing, complete removal of targeted PFAS compounds to concentrations below reporting limits of 0.5 µg/kg was demonstrated at temperatures of 400°C[1]. Three field-scale thermal PFAS treatment projects that have been completed in the US include an in-pile treatment demonstration, an in situ vadose zone treatment demonstration and a larger scale treatment demonstration with excavated PFAS-impacted soil in a constructed pile. Based on the results, thermal treatment temperatures of at least 400°C and a holding time of 7-10 days are recommended for reaching local and federal PFAS soil standards. The energy requirement to treat typical wet soil ranges from 300 to 400 kWh per cubic yard, exclusive of heat losses which are scale dependent. Extracted vapors have been treated using condensation and granular activated charcoal filtration, with thermal and catalytic oxidation as another option which is currently being evaluated for field scale applications. Compared to other options such as soil washing, the ability to treat on site and to treat all soil fractions is an advantage.

Related Article(s):

Contributors: Gorm Heron, Emily Crownover, Patrick Joyce, Ramona Iery

Key Resource:

  • Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation[1]

Introduction

Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) have become prominent emerging contaminants in soil and groundwater. Soil source zones have been identified at locations where the chemicals were produced, handled or used. Few effective options exist for treatments that can meet local and federal soil standards. Over the past 30 plus years, thermal remediation technologies have grown from experimental and innovative prospects to mature and accepted solutions deployed effectively at many sites. More than 600 thermal case studies have been summarized by Horst and colleagues[2]. Thermal Conduction Heating (TCH) has been used for higher temperature applications such as removal of 1,4-Dioxane. This article reports recent experience with TCH treatment of PFAS-impacted soil.

Target Temperature and Duration

PFAS behave differently from most other organics subjected to TCH treatment. While the boiling points of individual PFAS fall in the range of 150-400°C, their chemical and physical behavior creates additional challenges. Some PFAS form ionic species in certain pH ranges and salts under other chemical conditions. This intricate behavior and our limited understanding of what this means for our ability to remove the PFAS from soils means that direct testing of thermal treatment options is warranted. Crownover and colleagues[1] subjected PFAS-laden soil to bench-scale heating to temperatures between 200 and 400°C which showed strong reductions of PFAS concentrations at 350°C and complete removal of many PFAS compounds at 400°C. The soil concentrations of targeted PFAS were reduced to nearly undetectable levels in this study.

Heating Method

For semi-volatile compounds such as dioxins, furans, poly-chlorinated biphenyls (PCBs) and Poly-Aromatic Hydrocarbons (PAH), thermal conduction heating has evolved as the dominant thermal technology because it is capable of achieving soil temperatures higher than the boiling point of water, which are necessary for complete removal of these organic compounds. Temperatures between 200 and 500°C have been required to achieve the desired reduction in contaminant concentrations[3]. TCH has become a popular technology for PFAS treatment because temperatures in the 400°C range are needed.

The energy source for TCH can be electricity (most commonly used), or fossil fuels (typically gas, diesel or fuel oil). Electrically powered TCH offers the largest flexibility for power input which also can be supplied by renewable and sustainable energy sources.

Energy Usage

During large precipitation events the rate of water deposition exceeds the rate of water infiltration, resulting in surface runoff (also called stormwater runoff). Surface characteristics including soil texture, presence of impermeable surfaces (natural and artificial), slope, and density and type of vegetation all influence the amount of surface runoff from a given land area. The use of passive systems such as retention ponds and biofiltration cells for treatment of surface runoff is well established for urban and roadway runoff. Treatment in those cases is typically achieved by directing runoff into and through a small constructed wetland, often at the outlet of a retention basin, or via filtration by directing runoff through a more highly engineered channel or vault containing the treatment materials. Filtration based technologies have proven to be effective for the removal of metals, organics, and suspended solids[4][5][6][7].

Surface Runoff on Ranges

Figure 2. Conceptual illustration of munition constituent production and transport on military ranges. Mesoscale residues are qualitatively defined as being easily visible to the naked eye (e.g., from around 50 µm to multiple cm in size) and less likely to be transported by moving water. Microscale residues are defined as <50 µm down to below 1 µm, and more likely to be entrained in, and transported by, moving water as particulates. Blue arrows represent possible water flow paths and include both dissolved and solid phase energetics. The red vertical arrow represents the predominant energetics dissolution process in close proximity to the residues due to precipitation.

Surface runoff represents a major potential mechanism through which energetics residues and related materials are transported off site from range soils to groundwater and surface water receptors (Figure 2). This process is particularly important for energetics that are water soluble (e.g., NTO and NQ) or generate soluble daughter products (e.g., DNAN and TNT). While traditional MC such as RDX and HMX have limited aqueous solubility, they also exhibit recalcitrance to degrade under most natural conditions. RDX and perchlorate are frequent groundwater contaminants on military training ranges. While actual field measurements of energetics in surface runoff are limited, laboratory experiments have been performed to predict mobile energetics contamination levels based on soil mass loadings[8][9][10][11][12]. For example, in a previous small study, MC were detected in surface runoff from an active live-fire range[13], and more recent sampling has detected MC in marsh surface water adjacent to the same installation (personal communication). Another recent report from Canada also detected RDX in both surface runoff and surface water at low part per billion levels in a survey of several military demolition sites[14]. However, overall, data regarding the MC contaminant profile of surface runoff from ranges is very limited, and the possible presence of non-energetic constituents (e.g., metals, binders, plasticizers) in runoff has not been examined. Additionally, while energetics-contaminated surface runoff is an important concern, mitigation technologies specifically for surface runoff have not yet been developed and widely deployed in the field. To effectively capture and degrade MC and associated compounds that are present in surface runoff, novel treatment media are needed to sorb a broad range of energetic materials and to transform the retained compounds through abiotic and/or microbial processes.

Surface runoff of organic and inorganic contaminants from live-fire ranges is a challenging issue for the Department of Defense (DoD). Potentially even more problematic is the fact that inputs to surface waters from large testing and training ranges typically originate from multiple sources, often encompassing hundreds of acres. No available technologies are currently considered effective for controlling non-point source energetics-laden surface runoff. While numerous technologies exist to treat collected explosives residues, contaminated soil and even groundwater, the decentralized nature and sheer volume of military range runoff have precluded the use of treatment technologies at full scale in the field.

Range Runoff Treatment Technology Components

Based on the conceptual foundation of previous research into surface water runoff treatment for other contaminants, with a goal to “trap and treat” the target compounds, the following components were selected for inclusion in the technology developed to address range runoff contaminated with energetic compounds.

Peat

Previous research demonstrated that a peat-based system provided a natural and sustainable sorptive medium for organic explosives such as HMX, RDX, and TNT, allowing much longer residence times than predicted from hydraulic loading alone[15][16][17][18][19]. Peat moss represents a bioactive environment for treatment of the target contaminants. While the majority of the microbial reactions are aerobic due to the presence of measurable dissolved oxygen in the bulk solution, anaerobic reactions (including methanogenesis) can occur in microsites within the peat. The peat-based substrate acts not only as a long term electron donor as it degrades but also acts as a strong sorbent. This is important in intermittently loaded systems in which a large initial pulse of MC can be temporarily retarded on the peat matrix and then slowly degraded as they desorb[17][19]. This increased residence time enhances the biotransformation of energetics and promotes the immobilization and further degradation of breakdown products. Abiotic degradation reactions are also likely enhanced by association with the organic-rich peat (e.g., via electron shuttling reactions of humics)[20].

Soybean Oil

Modeling has indicated that peat moss amended with crude soybean oil would significantly reduce the flux of dissolved TNT, RDX, and HMX through the vadose zone to groundwater compared to a non-treated soil (see ESTCP ER-200434). The technology was validated in field soil plots, showing a greater than 500-fold reduction in the flux of dissolved RDX from macroscale Composition B detonation residues compared to a non-treated control plot[17]. Laboratory testing and modeling indicated that the addition of soybean oil increased the biotransformation rates of RDX and HMX at least 10-fold compared to rates observed with peat moss alone[19]. Subsequent experiments also demonstrated the effectiveness of the amended peat moss material for stimulating perchlorate transformation when added to a highly contaminated soil (Fuller et al., unpublished data). These previous findings clearly demonstrate the effectiveness of peat-based materials for mitigating transport of both organic and inorganic energetic compounds through soil to groundwater.

Biochar

Recent reports have highlighted additional materials that, either alone, or in combination with electron donors such as peat moss and soybean oil, may further enhance the sorption and degradation of surface runoff contaminants, including both legacy energetics and insensitive high explosives (IHE). For instance, biochar, a type of black carbon, has been shown to not only sorb a wide range of organic and inorganic contaminants including MCs[21][22][23][24], but also to facilitate their degradation[25][26][27][28][29][30]. Depending on the source biomass and pyrolysis conditions, biochar can possess a high specific surface area (on the order of several hundred m2/g)[31][32] and hence a high sorption capacity. Biochar and other black carbon also exhibit especially high affinity for nitroaromatic compounds (NACs) including TNT and 2,4-dinitrotoluene (DNT)[33][34][35]. This is due to the strong π-π electron donor-acceptor interactions between electron-rich graphitic domains in black carbon and the electron-deficient aromatic ring of the NAC[34][35]. These characteristics make biochar a potentially effective, low cost, and sustainable sorbent for removing MC and other contaminants from surface runoff and retaining them for subsequent degradation in situ.

Furthermore, black carbon such as biochar can promote abiotic and microbial transformation reactions by facilitating electron transfer. That is, biochar is not merely a passive sorbent for contaminants, but also a redox mediator for their degradation. Biochar can promote contaminant degradation through two different mechanisms: electron conduction and electron storage[36].

First, the microscopic graphitic regions in biochar can adsorb contaminants like NACs strongly, as noted above, and also conduct reducing equivalents such as electrons and atomic hydrogen to the sorbed contaminants, thus promoting their reductive degradation. This catalytic process has been demonstrated for TNT, DNT, RDX, HMX, and nitroglycerin[37][38][39][27][29] and is expected to occur also for IHE including DNAN and NTO.

Second, biochar contains in its structure abundant redox-facile functional groups such as quinones and hydroquinones, which are known to accept and donate electrons reversibly. Depending on the biomass and pyrolysis temperature, certain biochar can possess a rechargeable electron storage capacity (i.e., reversible electron accepting and donating capacity) on the order of several millimoles e/g[40][41][42]. This means that when "charged", biochar can provide electrons for either abiotic or biotic degradation of reducible compounds such as MC. The abiotic reduction of DNT and RDX mediated by biochar has been demonstrated[28] and similar reactions are expected to occur for DNAN and NTO as well. Recent studies have shown that the electron storage capacity of biochar is also accessible to microbes. For example, soil bacteria such as Geobacter and Shewanella species can utilize oxidized (or "discharged") biochar as an electron acceptor for the oxidation of organic substrates such as lactate and acetate[43][44] and reduced (or "charged") biochar as an electron donor for the reduction of nitrate[44]. This is significant because, through microbial access of stored electrons in biochar, contaminants that do not sorb strongly to biochar can still be degraded.

Similar to nitrate, perchlorate and other relatively water-soluble energetic compounds (e.g., NTO and NQ) may also be similarly transformed using reduced biochar as an electron donor. Unlike other electron donors, biochar can be recharged through biodegradation of organic substrates[44] and thus can serve as a long-lasting sorbent and electron repository in soil. Similar to peat moss, the high porosity and surface area of biochar not only facilitate contaminant sorption but also create anaerobic reducing microenvironments in its inner pores, where reductive degradation of energetic compounds can take place.

Other Sorbents

Chitin and unmodified cellulose were predicted by Density Functional Theory methods to be favorable for absorption of NTO and NQ, as well as the legacy explosives[45]. Cationized cellulosic materials (e.g., cotton, wood shavings) have been shown to effectively remove negatively charged energetics like perchlorate and NTO from solution[46]. A substantial body of work has shown that modified cellulosic biopolymers can also be effective sorbents for removing metals from solution[47][48][49][50] and therefore will also likely be applicable for some of the metals that may be found in surface runoff at firing ranges.

Technology Evaluation

Based on the properties of the target munition constituents, a combination of materials was expected to yield the best results to facilitate the sorption and subsequent biotic and abiotic degradation of the contaminants.

Sorbents

Table 1. Freundlich and Langmuir adsorption parameters for insensitive and legacy explosives
Compound Freundlich Langmuir
Parameter Peat CAT Pine CAT Burlap CAT Cotton Parameter Peat CAT Pine CAT Burlap CAT Cotton
HMX Kf 0.08 +/- 0.00 -- -- -- qm (mg/g) 0.29 +/- 0.04 -- -- --
n 1.70 +/- 0.18 -- -- -- b (L/mg) 0.39 +/- 0.09 -- -- --
r2 0.91 -- -- -- r2 0.93 -- -- --
RDX Kf 0.11 +/- 0.02 -- -- -- qm (mg/g) 0.38 +/- 0.05 -- -- --
n 2.75 +/- 0.63 -- -- -- b (L/mg) 0.23 +/- 0.08 -- -- --
r2 0.69 -- -- -- r2 0.69 -- -- --
TNT Kf 1.21 +/- 0.15 1.02 +/- 0.04 0.36 +/- 0.02 -- qm (mg/g) 3.63 +/- 0.18 1.26 +/- 0.06 -- --
n 2.78 +/- 0.67 4.01 +/- 0.44 1.59 +/- 0.09 -- b (L/mg) 0.89 +/- 0.13 0.76 +/- 0.10 -- --
r2 0.81 0.93 0.98 -- r2 0.97 0.97 -- --
NTO Kf -- 0.94 +/- 0.05 0.41 +/- 0.05 0.26 +/- 0.06 qm (mg/g) -- 4.07 +/- 0.26 1.29 +/- 0.12 0.83 +/- .015
n -- 1.61 +/- 0.11 2.43 +/- 0.41 2.53 +/- 0.76 b (L/mg) -- 0.30 +/- 0.04 0.36 +/- 0.08 0.30 +/- 0.15
r2 -- 0.97 0.82 0.57 r2 -- 0.99 0.89 0.58
DNAN Kf 0.38 +/- 0.05 0.01 +/- 0.01 -- -- qm (mg/g) 2.57 +/- 0.33 -- -- --
n 1.71 +/- 0.20 0.70 +/- 0.13 -- -- b (L/mg) 0.13 +/- 0.03 -- -- --
r2 0.89 0.76 -- -- r2 0.92 -- -- --
ClO4 Kf -- 1.54 +/- 0.06 0.53 +/- 0.03 -- qm (mg/g) -- 3.63 +/- 0.18 1.26 +/- 0.06 --
n -- 2.42 +/- 0.16 2.42 +/- 0.26 -- b (L/mg) -- 0.89 +/- 0.13 0.76 +/- 0.10 --
r2 -- 0.97 0.92 -- r2 -- 0.97 0.97 --
Notes:
-- Indicates the algorithm failed to converge on the model fitting parameters, therefore there was no successful model fit.
CAT Indicates cationized material.

The materials screened included Sphagnum peat moss, primarily for sorption of HMX, RDX, TNT, and DNAN, as well as cationized cellulosics for removal of perchlorate and NTO. The cationized cellulosics that were examined included: pine sawdust, pine shavings, aspen shavings, cotton linters (fine, silky fibers which adhere to cotton seeds after ginning), chitin, chitosan, burlap (landscaping grade), coconut coir, raw cotton, raw organic cotton, cleaned raw cotton, cotton fabric, and commercially cationized fabrics.

As shown in Table 1[46], batch sorption testing indicated that a combination of Sphagnum peat moss and cationized pine shavings provided good removal of both the neutral organic energetics (HMX, RDX, TNT, DNAN) as well as the negatively charged energetics (perchlorate, NTO).

Slow Release Carbon Sources

Table 2. Slow-release Carbon Sources
Material Abbreviation Commercial Source Notes
polylactic acid PLA6 Goodfellow high molecular weight thermoplastic polyester
polylactic acid PLA80 Goodfellow low molecular weight thermoplastic polyester
polyhydroxybutyrate PHB Goodfellow bacterial polyester
polycaprolactone PCL Sarchem Labs biodegradable polyester
polybutylene succinate BioPBS Mitsubishi Chemical Performance Polymers compostable bio-based product
sucrose ester of fatty acids SEFA SP10 Sisterna food and cosmetics additive
sucrose ester of fatty acids SEFA SP70 Sisterna food and cosmetics additive

A range of biopolymers widely used in the production of biodegradable plastics were screened for their ability to support aerobic and anoxic biodegradation of the target munition constituents. These compounds and their sources are listed in Table 2.

Figure 3. Schematic of interactions between biochar and munitions constituents

Multiple pure bacterial strains and mixed cultures were screened for their ability to utilize the solid biopolymers as a carbon source to support energetic compound transformation and degradation. Pure strains included the aerobic RDX degrader Rhodococcus species DN22 (DN22 henceforth)[51] and Gordonia species KTR9 (KTR9 henceforth)[51], the anoxic RDX degrader Pseudomonas fluorencens species I-C (I-C henceforth)[52][53], and the aerobic NQ degrader Pseudomonas extremaustralis species NQ5 (NQ5 henceforth)[54]. Anaerobic mixed cultures were obtained from a membrane bioreactor (MBR) degrading a mixture of six explosives (HMX, RDX, TNT, NTO, NQ, DNAN), as well as perchlorate and nitrate[55]. The results indicated that the slow-release carbon sources polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polybutylene succinate (BioPBS) were effective for supporting the biodegradation of the mixture of energetics.

Biochar

Figure 4. Composition of the columns during the sorption-biodegradation experiments
Figure 5. Representative breakthrough curves of energetics during the second replication of the column sorption-biodegradation experiment

The ability of biochar to sorb and abiotically reduce legacy and insensitive munition constituents, as well as biochar’s use as an electron donor for microbial biodegradation of energetic compounds was examined. Batch experiments indicated that biochar was a reasonable sorbent for some of the energetics (RDX, DNAN), but could also serve as both an electron acceptor and an electron donor to facilitate abiotic (RDX, DNAN, NTO) and biotic (perchlorate) degradation (Figure 3)[56].

Sorption-Biodegradation Column Experiments

The selected materials and cultures discussed above, along with a small amount of range soil and crushed oyster shell as a slow-release pH buffering agent, were packed into columns, and a steady flow of dissolved energetics was passed through the columns. The composition of the four columns is presented in Figure 4. The influent and effluent concentrations of the energetics was monitored over time. The column experiment was performed twice. As seen in Figure 5, there was sustained almost complete removal of RDX and ClO4-, and more removal of the other energetics in the bioactive columns compared to the sorption only columns, over the course of the experiments. For reference, 100 PV is approximately equivalent to three months of operation. The higher effectiveness of sorption with biodegradation compared to sorption only is further illustrated in Figure 6, where the energetics mass removal in the bioactive columns was shown to be 2-fold (TNT) to 20-fold (RDX) higher relative to that observed in the sorption only column. The mass removal of HMX and NQ were both over 40% higher with biochar added to the sorption with biodegradation treatment, although biochar showed little added benefit for removal of other energetics tested.

Trap and Treat Technology

Figure 6. Energetic mass removal relative to the sorption only removal during the column sorption-biodegradation experiments. Dashed line given for reference to C1 removal = 1.

These results provide a proof-of-concept for the further development of a passive and sustainable “trap-and-treat” technology for remediation of energetic compounds in stormwater runoff at military testing and training ranges. At a given site, the stormwater runoff would need to be fully characterized with respect to key parameters (e.g., pH, major anions), and site specific treatability testing would be recommended to assure there was nothing present in the runoff that would reduce performance. Effluent monitoring on a regular basis would also be needed (and would be likely be expected by state and local regulators) to assess performance decline over time.

The components of the technology would be predominantly peat moss and cationized pine shavings, supplemented with biochar, ground oyster shell, the biopolymer carbon sources, and the bioaugmentation cultures. The entire mix would likely be emplaced in a concrete vault at the outflow end of the stormwater runoff retention basin at the contaminated site. The deployed treatment system would have further design elements, such as a system to trap and retain suspended solids in the runoff in order to minimize clogging the matrix. the inside of the vault would be baffled to maximize the hydraulic retention time of the contaminated runoff. The biopolymer carbon sources and oyster shell may need be refreshed periodically (perhaps yearly) to maintain performance. However, a complete removal and replacement of the base media (peat moss, CAT pine) would not be advised, as that would lead to a loss of the acclimated biomass.

Summary

Novel sorbents and slow-release carbon sources can be an effective way to promote the sorption and biodegradation of a range of legacy and insensitive munition constituents from surface runoff, and the added benefits of biochar for both sorption and biotic and abiotic degradation of these compounds was demonstrated. These results establish a foundation for a passive, sustainable surface runoff treatment technology for both active and inactive military ranges.

References

  1. ^ 1.0 1.1 1.2 Crownover, E., Oberle, D., Heron, G., Kluger, M., 2019. Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation. Remediation Journal, 29(4), pp. 77-81. doi: 10.1002/rem.21623
  2. ^ Horst, J., Munholland, J., Hegele, P., Klemmer, M., Gattenby, J., 2021. In Situ Thermal Remediation for Source Areas: Technology Advances and a Review of the Market From 1988–2020. Groundwater Monitoring & Remediation, 41(1), p. 17. doi: 10.1111/gwmr.12424  Open Access Manuscript
  3. ^ Stegemeier, G.L., Vinegar, H.J., 2001. Thermal Conduction Heating for In-Situ Thermal Desorption of Soils. Ch. 4.6, pp. 1-37. In: Chang H. Oh (ed.), Hazardous and Radioactive Waste Treatment Technologies Handbook, CRC Press, Boca Raton, FL. ISBN 9780849395864 Open Access Article
  4. ^ Sansalone, J.J., 1999. In-situ performance of a passive treatment system for metal source control. Water Science and Technology, 39(2), pp. 193-200. doi: 10.1016/S0273-1223(99)00023-2
  5. ^ Deletic, A., Fletcher, T.D., 2006. Performance of grass filters used for stormwater treatment—A field and modelling study. Journal of Hydrology, 317(3-4), pp. 261-275. doi: 10.1016/j.jhydrol.2005.05.021
  6. ^ Grebel, J.E., Charbonnet, J.A., Sedlak, D.L., 2016. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Research, 88, pp. 481-491. doi: 10.1016/j.watres.2015.10.019
  7. ^ Seelsaen, N., McLaughlan, R., Moore, S., Ball, J.E., Stuetz, R.M., 2006. Pollutant removal efficiency of alternative filtration media in stormwater treatment. Water Science and Technology, 54(6-7), pp. 299-305. doi: 10.2166/wst.2006.617
  8. ^ Cubello, F., Polyakov, V., Meding, S.M., Kadoya, W., Beal, S., Dontsova, K., 2024. Movement of TNT and RDX from composition B detonation residues in solution and sediment during runoff. Chemosphere, 350, Article 141023. doi: 10.1016/j.chemosphere.2023.141023
  9. ^ Karls, B., Meding, S.M., Li, L., Polyakov, V., Kadoya, W., Beal, S., Dontsova, K., 2023. A laboratory rill study of IMX-104 transport in overland flow. Chemosphere, 310, Article 136866. doi: 10.1016/j.chemosphere.2022.136866  Open Access Article
  10. ^ Polyakov, V., Beal, S., Meding, S.M., Dontsova, K., 2025. Effect of gypsum on transport of IMX-104 constituents in overland flow under simulated rainfall. Journal of Environmental Quality, 54(1), pp. 191-203. doi: 10.1002/jeq2.20652  Open Access Article.pdf
  11. ^ Polyakov, V., Kadoya, W., Beal, S., Morehead, H., Hunt, E., Cubello, F., Meding, S.M., Dontsova, K., 2023. Transport of insensitive munitions constituents, NTO, DNAN, RDX, and HMX in runoff and sediment under simulated rainfall. Science of the Total Environment, 866, Article 161434. doi: 10.1016/j.scitotenv.2023.161434  Open Access Article.pdf
  12. ^ Price, R.A., Bourne, M., Price, C.L., Lindsay, J., Cole, J., 2011. Transport of RDX and TNT from Composition-B Explosive During Simulated Rainfall. In: Environmental Chemistry of Explosives and Propellant Compounds in Soils and Marine Systems: Distributed Source Characterization and Remedial Technologies. American Chemical Society, pp. 229-240. doi: 10.1021/bk-2011-1069.ch013
  13. ^ Fuller, M.E., 2015. Fate and Transport of Colloidal Energetic Residues. Department of Defense Strategic Environmental Research and Development Program (SERDP), Project ER-1689. Project Website   Final Report.pdf
  14. ^ Lapointe, M.-C., Martel, R., Diaz, E., 2017. A Conceptual Model of Fate and Transport Processes for RDX Deposited to Surface Soils of North American Active Demolition Sites. Journal of Environmental Quality, 46(6), pp. 1444-1454. doi: 10.2134/jeq2017.02.0069
  15. ^ Fuller, M.E., Hatzinger, P.B., Rungkamol, D., Schuster, R.L., Steffan, R.J., 2004. Enhancing the attenuation of explosives in surface soils at military facilities: Combined sorption and biodegradation. Environmental Toxicology and Chemistry, 23(2), pp. 313-324. doi: 10.1897/03-187
  16. ^ Fuller, M.E., Lowey, J.M., Schaefer, C.E., Steffan, R.J., 2005. A Peat Moss-Based Technology for Mitigating Residues of the Explosives TNT, RDX, and HMX in Soil. Soil and Sediment Contamination: An International Journal, 14(4), pp. 373-385. doi: 10.1080/15320380590954097
  17. ^ 17.0 17.1 17.2 Fuller, M.E., Schaefer, C.E., Steffan, R.J., 2009. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions. Chemosphere, 77(8), pp. 1076-1083. doi: 10.1016/j.chemosphere.2009.08.044
  18. ^ Hatzinger, P.B., Fuller, M.E., Rungkamol, D., Schuster, R.L., Steffan, R.J., 2004. Enhancing the attenuation of explosives in surface soils at military facilities: Sorption-desorption isotherms. Environmental Toxicology and Chemistry, 23(2), pp. 306-312. doi: 10.1897/03-186
  19. ^ 19.0 19.1 19.2 Schaefer, C.E., Fuller, M.E., Lowey, J.M., Steffan, R.J., 2005. Use of Peat Moss Amended with Soybean Oil for Mitigation of Dissolved Explosive Compounds Leaching into the Subsurface: Insight into Mass Transfer Mechanisms. Environmental Engineering Science, 22(3), pp. 337-349. doi: 10.1089/ees.2005.22.337
  20. ^ Roden, E.E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., Konishi, H., Xu, H., 2010. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience, 3, pp. 417-421. doi: 10.1038/ngeo870
  21. ^ Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, pp. 19-33. doi: 10.1016/j.chemosphere.2013.10.071
  22. ^ Mohan, D., Sarswat, A., Ok, Y.S., Pittman, C.U., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, pp. 191-202. doi: 10.1016/j.biortech.2014.01.120
  23. ^ Oh, S.-Y., Seo, Y.-D., Jeong, T.-Y., Kim, S.-D., 2018. Sorption of Nitro Explosives to Polymer/Biomass-Derived Biochar. Journal of Environmental Quality, 47(2), pp. 353-360. doi: 10.2134/jeq2017.09.0357
  24. ^ Xie, T., Reddy, K.R., Wang, C., Yargicoglu, E., Spokas, K., 2015. Characteristics and Applications of Biochar for Environmental Remediation: A Review. Critical Reviews in Environmental Science and Technology, 45(9), pp. 939-969. doi: 10.1080/10643389.2014.924180
  25. ^ Oh, S.-Y., Cha, D.K., Kim, B.-J., Chiu, P.C., 2002. Effect of adsorption to elemental iron on the transformation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in solution. Environmental Toxicology and Chemistry, 21(7), pp. 1384-1389. doi: 10.1002/etc.5620210708
  26. ^ Ye, J., Chiu, P.C., 2006. Transport of Atomic Hydrogen through Graphite and its Reaction with Azoaromatic Compounds. Environmental Science and Technology, 40(12), pp. 3959-3964. doi: 10.1021/es060038x
  27. ^ 27.0 27.1 Oh, S.-Y., Chiu, P.C., 2009. Graphite- and Soot-Mediated Reduction of 2,4-Dinitrotoluene and Hexahydro-1,3,5-trinitro-1,3,5-triazine. Environmental Science and Technology, 43(18), pp. 6983-6988. doi: 10.1021/es901433m
  28. ^ 28.0 28.1 Oh, S.-Y., Son, J.-G., Chiu, P.C., 2013. Biochar-mediated reductive transformation of nitro herbicides and explosives. Environmental Toxicology and Chemistry, 32(3), pp. 501-508. doi: 10.1002/etc.2087   Open Access Article.pdf
  29. ^ 29.0 29.1 Xu, W., Dana, K.E., Mitch, W.A., 2010. Black Carbon-Mediated Destruction of Nitroglycerin and RDX by Hydrogen Sulfide. Environmental Science and Technology, 44(16), pp. 6409-6415. doi: 10.1021/es101307n
  30. ^ Xu, W., Pignatello, J.J., Mitch, W.A., 2013. Role of Black Carbon Electrical Conductivity in Mediating Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Transformation on Carbon Surfaces by Sulfides. Environmental Science and Technology, 47(13), pp. 7129-7136. doi: 10.1021/es4012367
  31. ^ Zhang, J., You, C., 2013. Water Holding Capacity and Absorption Properties of Wood Chars. Energy and Fuels, 27(5), pp. 2643-2648. doi: 10.1021/ef4000769
  32. ^ Gray, M., Johnson, M.G., Dragila, M.I., Kleber, M., 2014. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, pp. 196-205. doi: 10.1016/j.biombioe.2013.12.010
  33. ^ Sander, M., Pignatello, J.J., 2005. Characterization of Charcoal Adsorption Sites for Aromatic Compounds:  Insights Drawn from Single-Solute and Bi-Solute Competitive Experiments. Environmental Science and Technology, 39(6), pp. 1606-1615. doi: 10.1021/es049135l
  34. ^ 34.0 34.1 Zhu, D., Kwon, S., Pignatello, J.J., 2005. Adsorption of Single-Ring Organic Compounds to Wood Charcoals Prepared Under Different Thermochemical Conditions. Environmental Science and Technology 39(11), pp. 3990-3998. doi: 10.1021/es050129e
  35. ^ 35.0 35.1 Zhu, D., Pignatello, J.J., 2005. Characterization of Aromatic Compound Sorptive Interactions with Black Carbon (Charcoal) Assisted by Graphite as a Model. Environmental Science and Technology, 39(7), pp. 2033-2041. doi: 10.1021/es0491376
  36. ^ Sun, T., Levin, B.D.A., Guzman, J.J.L., Enders, A., Muller, D.A., Angenent, L.T., Lehmann, J., 2017. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, 8, Article 14873. doi: 10.1038/ncomms14873   Open Access Article.pdf
  37. ^ Oh, S.-Y., Cha, D.K., Chiu, P.C., 2002. Graphite-Mediated Reduction of 2,4-Dinitrotoluene with Elemental Iron. Environmental Science and Technology, 36(10), pp. 2178-2184. doi: 10.1021/es011474g
  38. ^ Oh, S.-Y., Cha, D.K., Kim, B.J., Chiu, P.C., 2004. Reduction of Nitroglycerin with Elemental Iron:  Pathway, Kinetics, and Mechanisms. Environmental Science and Technology, 38(13), pp. 3723-3730. doi: 10.1021/es0354667
  39. ^ Oh, S.-Y., Cha, D.K., Kim, B.J., Chiu, P.C., 2005. Reductive transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, and methylenedinitramine with elemental iron. Environmental Toxicology and Chemistry, 24(11), pp. 2812-2819. doi: 10.1897/04-662R.1
  40. ^ Klüpfel, L., Keiluweit, M., Kleber, M., Sander, M., 2014. Redox Properties of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science and Technology, 48(10), pp. 5601-5611. doi: 10.1021/es500906d
  41. ^ Prévoteau, A., Ronsse, F., Cid, I., Boeckx, P., Rabaey, K., 2016. The electron donating capacity of biochar is dramatically underestimated. Scientific Reports, 6, Article 32870. doi: 10.1038/srep32870   Open Access Article.pdf
  42. ^ Xin, D., Xian, M., Chiu, P.C., 2018. Chemical methods for determining the electron storage capacity of black carbon. MethodsX, 5, pp. 1515-1520. doi: 10.1016/j.mex.2018.11.007   Open Access Article.pdf
  43. ^ Kappler, A., Wuestner, M.L., Ruecker, A., Harter, J., Halama, M., Behrens, S., 2014. Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science and Technology Letters, 1(8), pp. 339-344. doi: 10.1021/ez5002209
  44. ^ 44.0 44.1 44.2 Saquing, J.M., Yu, Y.-H., Chiu, P.C., 2016. Wood-Derived Black Carbon (Biochar) as a Microbial Electron Donor and Acceptor. Environmental Science and Technology Letters, 3(2), pp. 62-66. doi: 10.1021/acs.estlett.5b00354
  45. ^ Todde, G., Jha, S.K., Subramanian, G., Shukla, M.K., 2018. Adsorption of TNT, DNAN, NTO, FOX7, and NQ onto Cellulose, Chitin, and Cellulose Triacetate. Insights from Density Functional Theory Calculations. Surface Science, 668, pp. 54-60. doi: 10.1016/j.susc.2017.10.004   Open Access Manuscript.pdf
  46. ^ 46.0 46.1 Fuller, M.E., Farquharson, E.M., Hedman, P.C., Chiu, P., 2022. Removal of munition constituents in stormwater runoff: Screening of native and cationized cellulosic sorbents for removal of insensitive munition constituents NTO, DNAN, and NQ, and legacy munition constituents HMX, RDX, TNT, and perchlorate. Journal of Hazardous Materials, 424(C), Article 127335. doi: 10.1016/j.jhazmat.2021.127335   Open Access Manuscript.pdf
  47. ^ Burba, P., Willmer, P.G., 1983. Cellulose: a biopolymeric sorbent for heavy-metal traces in waters. Talanta, 30(5), pp. 381-383. doi: 10.1016/0039-9140(83)80087-3
  48. ^ Brown, P.A., Gill, S.A., Allen, S.J., 2000. Metal removal from wastewater using peat. Water Research, 34(16), pp. 3907-3916. doi: 10.1016/S0043-1354(00)00152-4
  49. ^ O’Connell, D.W., Birkinshaw, C., O’Dwyer, T.F., 2008. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99(15), pp. 6709-6724. doi: 10.1016/j.biortech.2008.01.036
  50. ^ Wan Ngah, W.S., Hanafiah, M.A.K.M., 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99(10), pp. 3935-3948. doi: 10.1016/j.biortech.2007.06.011
  51. ^ 51.0 51.1 Coleman, N.V., Nelson, D.R., Duxbury, T., 1998. Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biology and Biochemistry, 30(8-9), pp. 1159-1167. doi: 10.1016/S0038-0717(97)00172-7
  52. ^ Pak, J.W., Knoke, K.L., Noguera, D.R., Fox, B.G., Chambliss, G.H., 2000. Transformation of 2,4,6-Trinitrotoluene by Purified Xenobiotic Reductase B from Pseudomonas fluorescens I-C. Applied and Environmental Microbiology, 66(11), pp. 4742-4750. doi: 10.1128/AEM.66.11.4742-4750.2000   Open AccessArticle.pdf
  53. ^ Fuller, M.E., McClay, K., Hawari, J., Paquet, L., Malone, T.E., Fox, B.G., Steffan, R.J., 2009. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Applied Microbiology and Biotechnology, 84, pp. 535-544. doi: 10.1007/s00253-009-2024-6   Open Access Manuscript
  54. ^ Kim, J., Fuller, M.E., Hatzinger, P.B., Chu, K.-H., 2024. Isolation and characterization of nitroguanidine-degrading microorganisms. Science of the Total Environment, 912, Article 169184. doi: 10.1016/j.scitotenv.2023.169184
  55. ^ Fuller, M.E., Hedman, P.C., Chu, K.-H., Webster, T.S., Hatzinger, P.B., 2023. Evaluation of a sequential anaerobic-aerobic membrane bioreactor system for treatment of traditional and insensitive munitions constituents. Chemosphere, 340, Article 139887. doi: 10.1016/j.chemosphere.2023.139887
  56. ^ Xin, D., Giron, J., Fuller, M.E., Chiu, P.C., 2022. Abiotic reduction of 3-nitro-1,2,4-triazol-5-one (NTO), DNAN, and RDX by wood-derived biochars through their rechargeable electron storage capacity. Environmental Science: Processes and Impacts, 24(2), pp. 316-329. doi: 10.1039/D1EM00447F   Open Access Manuscript.pdf

See Also