Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(962 intermediate revisions by the same user not shown)
Line 1: Line 1:
Advection and Groundwater Flow
+
==Munitions Constituents – Sample Extraction and Analytical Techniques==
 
+
Munitions Constituents, including [[Wikipedia: Insensitive munition | insensitive munitions]] IM), are a broad category of compounds and, in areas where manufactured or used, can be found in a variety of environmental matrices (waters, soil, and tissues). This presents an analytical challenge when a variety of these munitions are to be quantified. This article discusses sample extraction methods for each typical sample matrix (high level water, low level water, soil and tissue) as well as the accompanying [[Wikipedia: High-performance liquid chromatography | HPLC]]-UV analytical method for 27 compounds of interest (legacy munitions, insensitive munitions, and surrogates).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 +
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 +
'''Related Article(s):'''
  
 +
*[[Munitions Constituents]]
  
 +
'''Contributor(s):'''
  
 
+
*Dr. Austin Scircle
 
 
 
 
 
 
A Conceptual Site Model (CSM) is a collection of information about a contaminated site that integrates the available evidence regarding its hydrogeologic setting, contaminant sources, exposure pathways, potential receptors, and site history.  A CSM for a [[Wikipedia: Light non-aqueous phase liquid | Light Non-Aqueous Phase Liquid (LNAPL)]] site focuses on several key concepts:  the stage in the LNAPL site life cycle, LNAPL distribution in the subsurface and the resulting mobility of the LNAPL, LNAPL as a source of dissolved and vapor plumes, and the attenuation of LNAPL sources over time.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
 
 
'''Related Article(s)'''
 
* [[LNAPL Remediation Technologies]]
 
* [[NAPL Mobility]]
 
* [[Natural Source Zone Depletion (NSZD)]]
 
* [[Natural Attenuation in Source Zone and Groundwater Plume - Bemidji Crude Oil Spill]]
 
* [[Monitored Natural Attenuation (MNA)]]
 
* [[Biodegradation - Hydrocarbons]]
 
 
 
'''CONTRIBUTOR(S):''' [[Dr. Charles Newell, P.E. | Charles Newell]]
 
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
* LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies. LNAPL-3. ITRC.<ref name="LNAPL-3">Interstate Technology and Regulatory Council (ITRC), 2018. LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies. LNAPL-3. ITRC, LNAPL Update Team, Washington, DC.  [https://lnapl-3.itrcweb.org LNAPL-3 Website]</ref>
 
 
* Managing Risk at LNAPL Sites - Frequently Asked Questions, 2nd Edition. API.<ref name="Sale2018"> Sale, T., Hopkins, H., and Kirkman, A., 2018.  Managing Risk at LNAPL Sites - Frequently Asked Questions, 2nd Edition. American Petroleum Institute (API), Washington, DC. 72 pages. [https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/lnapl/lnapl-faqs Free download from API.] [https://www.enviro.wiki/index.php?title=File:Sale-2018_LNAPL_FAQs_2nd_ed.pdf Report.pdf]</ref>
 
 
==Life Cycle of LNAPL Sites==
 
[[File:Newell1w2Fig1.png |thumb|left|250px| Figure 1.  Early, Middle, and Late Stage LNAPL releases<ref name= "Sale2018"/>.  The key distinctions are the presence of continuous LNAPL that can be mobile and the amount of time that has elapsed for NSZD to remove LNAPL.]]
 
A Conceptual Site Model (CSM) is a collection of information about a contaminated site that integrates the available evidence regarding its hydrogeologic setting, contaminant sources, exposure pathways, potential receptors, and site history (see ASTM E1689-95(2014)<ref name="ASTM2014a"> ASTM, 2014. Standard Guide for Developing Conceptual Site Models for Contaminated Sites. ASTM E1689-95(2014), ASTM International, West Conshohocken, PA. [https://doi.org/10.1520/E1689-95R14 DOI: 10.1520/E1689-95R14]  http://www.astm.org/cgi-bin/resolver.cgi?E1689</ref> and ASTM E2531-06(2014)<ref name="ASTM2014b"> ASTM, 2014. Standard Guide for Development of Conceptual Site Models and Remediation Strategies for Light Nonaqueous-Phase Liquids Released to the Subsurface. ASTM E2531-06(2014), ASTM International, West Conshohocken, PA. [https://doi.org/10.1520/E2531-06R14  DOI: 10.1520/E2531-06R14]  http://www.astm.org/cgi-bin/resolver.cgi?E2531</ref>).  When developing a CSM for an LNAPL site, it is important to understand that LNAPL releases evolve and change from what are referred to as Early Stage sites to Middle Stage and then to Late Stage sites<ref name="Sale2018"/> (Figure 1). 
 
 
An Early Stage site is characterized by the presence of a continuous LNAPL zone where a thick layer of LNAPL accumulation (also known as free product) is observed in monitoring wells. The continuous LNAPL zone (or LNAPL body) may be mobile at Early Stage sites, migrating into previously non-impacted areas. Removal of significant LNAPL mass by active pumping may be feasible at these sites. Early Stage sites are now relatively rare in the United States due to stringent environmental regulations enacted in the 1980s which emphasized preventing releases.
 
[[File:Newell1w2Fig2a.png |thumb|500px| Figure 2a.  Time lapse conceptualization of the formation of an LNAPL body<ref name="ITRC2019"> Interstate Technology and Regulatory Council (ITRC), 2019. LNAPL Training: Connecting the Science to Managing Sites. Part 1: Understanding LNAPL Behavior in the Subsurface. ITRC, Washington, DC. [[Media: ITRC2019_LNAPLtrainingPart1.pdf | Slides.pdf]]</ref>.]]
 
[[File:Newell1w2Fig2b.png |thumb|500px| Figure 2b.  Sand tank experiment of an LNAPL release<ref name="ITRC2019"/>.]]
 
  
Many sites in the U.S. are now considered to be in the Middle Stage, where the LNAPL thickness in wells has been largely depleted by natural spreading of the LNAPL body, [[Natural Source Zone Depletion (NSZD)]], smearing of the water table, and/or active remediation, and where the LNAPL bodies are stable or shrinking<ref name="LNAPL-3"/><ref name="Sale2018"/> (Figure 1). Active pumping characteristically only recovers LNAPL at relatively low rates of under 100 gallons per acre per year at Middle Stage sites, but NSZD rates may be much higher, on the order of 100s to 1,000s of gallons per acre per year. Middle Stage dissolved phase plumes, typically comprised of monoaromatics such as benzene, toluene, ethyl benzene, and xylenes, are stable or shrinking over time.
+
*[https://www.epa.gov/sites/default/files/2015-07/documents/epa-8330b.pdf USEPA Method 8330B]<ref name= "8330B">United States Environmental Protection Agency (USEPA), 2006. EPA Method 8330B (SW-846) Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Revision 2. [https://www.epa.gov/esam/epa-method-8330b-sw-846-nitroaromatics-nitramines-and-nitrate-esters-high-performance-liquid USEPA Website]&nbsp; &nbsp;[[Media: epa-8330b.pdf | Method 8330B.pdf]]</ref>
  
Late Stage sites only have a sparse distribution of residual (trapped) LNAPL due to long-term NSZD and any active remediation that has been performed at the site. The potential risks to receptors are typically low at Late Stage sites due to relatively low concentrations of LNAPL constituents in the dissolved phase and/or vapor plumes.
+
*Methods for simultaneous quantification of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices<ref name="CrouchEtAl2020">Crouch, R.A., Smith, J.C., Stromer, B.S., Hubley, C.T., Beal, S., Lotufo, G.R., Butler, A.D., Wynter, M.T., Russell, A.L., Coleman, J.G., Wayne, K.M., Clausen, J.L., Bednar, A.J., 2020. Methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices. Talanta, 217, Article 121008. [https://doi.org/10.1016/j.talanta.2020.121008 doi: 10.1016/j.talanta.2020.121008]&nbsp; &nbsp;[[Media: CrouchEtAl2020.pdf | Open Access Manuscript.pdf]]</ref>
  
==LNAPL Body Formation==
+
==Introduction==
LNAPLs released from tanks, pits, pipelines, or other sources will percolate downwards under the influence of gravity through permeable pathways in the unsaturated zone (e.g., soil pore space, fractures, and macropores) depending on the volume and pressure head of the LNAPL release, until encountering an impermeable layer or the water table, causing the LNAPL body to spread laterallyThe Interstate Technology and Regulatory Council (ITRC)<ref name="LNAPL-3"/> describes this downward movement toward the water table this way:
+
The primary intention of the analytical methods presented here is to support the monitoring of legacy and insensitive munitions contamination on test and training ranges, however legacy and insensitive munitions often accompany each other at demilitarization facilities, manufacturing facilities, and other environmental sites. Energetic materials typically appear on ranges as small, solid particulates and due to their varying functional groups and polarities, can partition in various environmental compartments<ref>Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp. 932-941. [https://doi.org/10.1002/prep.201700089 doi: 10.1002/prep.201700089]</ref>. To ensure that contaminants are monitored and controlled at these sites and to sustainably manage them a variety of sample matrices (surface or groundwater, process waters, soil, and tissues) must be considered. (Process water refers to water used during industrial manufacturing or processing of legacy and insensitive munitions.) Furthermore, additional analytes must be added to existing methodologies as the usage of IM compounds changes and as new degradation compounds are identifiedOf note, relatively new IM formulations containing NTO, DNAN, and NQ are seeing use in [[Wikipedia: IMX-101 | IMX-101]], IMX-104, Pax-21 and Pax-41 (Table 1)<ref>Mainiero, C. 2015. Picatinny Employees Recognized for Insensitive Munitions. U.S. Army, Picatinny Arsenal Public Affairs.  [https://www.army.mil/article/148873/picatinny_employees_recognized_for_insensitive_munitions Open Access Press Release]</ref><ref>Frem, D., 2022. A Review on IMX-101 and IMX-104 Melt-Cast Explosives: Insensitive Formulations for the Next-Generation Munition Systems. Propellants, Explosives, Pyrotechnics, 48(1), e202100312. [https://doi.org/10.1002/prep.202100312 doi: 10.1002/prep.202100312]</ref>.
  
<blockquote>''During the downward movement of LNAPL through the soil, the presence of confining layers, subsurface heterogeneities, or other preferential pathways may result in irregular and complex lateral spreading and/or perching of LNAPL before the water table is encountered. Once at the water table, the LNAPL will spread laterally in a radial fashion as well as penetrate vertically downward into the saturated zone, displacing water to some depth proportional to the driving force of the vertical LNAPL column (or LNAPL head). The vertical penetration of LNAPL into the saturated zone will continue to occur as long as the downward force produced by the LNAPL head or pressure from the LNAPL release exceeds the counteracting forces produced by the resistance of the soil matrix and the buoyancy resulting from the density difference between LNAPL and groundwater.''<ref name="LNAPL-3"/></blockquote>
+
Sampling procedures for legacy and insensitive munitions are identical and utilize multi-increment sampling procedures found in USEPA Method 8330B Appendix A<ref name= "8330B"/>. Sample hold times, subsampling and quality control requirements are also unchanged. The key differences lie in the extraction methods and instrumental methods. Briefly, legacy munitions analysis of low concentration waters uses a single cartridge reverse phase [[Wikipedia: Solid-phase extraction | SPE]] procedure, and [[Wikipedia: Acetonitrile | acetonitrile]] (ACN) is used for both extraction and [[Wikipedia: Elution | elution]] for aqueous and solid samples<ref name= "8330B"/><ref>United States Environmental Protection Agency (USEPA), 2007. EPA Method 3535A (SW-846) Solid-Phase Extraction (SPE), Revision 1. [https://www.epa.gov/esam/epa-method-3535a-sw-846-solid-phase-extraction-spe USEPA Website]&nbsp; &nbsp;[[Media: epa-3535a.pdf | Method 3535A.pdf]]</ref>. An [[Wikipedia: High-performance_liquid_chromatography#Isocratic_and_gradient_elution | isocratic]] separation via reversed-phase C-18 column with 50:50 methanol:water mobile phase or a C-8 column with 15:85 isopropanol:water mobile phase is used to separate legacy munitions<ref name= "8330B"/>. While these procedures are sufficient for analysis of legacy munitions, alternative solvents, additional SPE cartridges, and a gradient elution are all required for the combined analysis of legacy and insensitive munitions.   
  
While the release at the surface is still active, the LNAPL body can expand until the LNAPL addition rate is equal to the NSZD depletion rate.  However, once the release at the surface is stopped, the expansion will stop relatively quickly, and the LNAPL body will stabilize. Figure 2a shows a conceptual depiction of this release scenario and Figure 2b shows a sand tank experiment of an LNAPL release. Because of the buoyancy effects, LNAPL releases that reach the water table will form LNAPL bodies that “like icebergs, are partially above and below the water table”.<ref name="Sale2018"/>
+
Previously, analysis of legacy and insensitive munitions required multiple analytical techniques, however the methods presented here combine the two munitions categories resulting in an HPLC-UV method and accompanying extraction methods for a variety of common sample matrices. A secondary HPLC-UV method and a HPLC-MS method were also developed as confirmatory methods. The methods discussed in this article were validated extensively by single-blind round robin testing and subsequent statistical treatment as part of ESTCP [https://serdp-estcp.mil/projects/details/d05c1982-bbfa-42f8-811d-51b540d7ebda ER19-5078]. Wherever possible, the quality control criteria in the Department of Defense Quality Systems Manual for Environmental Laboratories were adhered to<ref>US Department of Defense and US Department of Energy, 2021. Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.4. 387 pages. [https://www.denix.osd.mil/edqw/denix-files/sites/43/2021/10/QSM-Version-5.4-FINAL.pdf Free Download]&nbsp; &nbsp;[[Media: QSM-Version-5.4.pdf | QSM Version 5.4.pdf]]</ref>. Analytes included in these methods are found in Table 1.
  
==Key Implications of the LNAPL Conceptual Site Model==
+
The chromatograms produced by the primary and secondary HPLC-UV methods are shown in Figure 1 and Figure 2, respectively. Chromatograms for each detector wavelength used are shown (315, 254, and 210 nm).
The nature of multi-phase flow processes in porous media (e.g., the interaction of LNAPL, water, and air in the pore spaces of an unconsolidated aquifer) has several important implications for environmental professionals in areas including interpretation of LNAPL thickness in monitoring wells and assessment of the long-term risk associated with LNAPL source zones.  A few of the key implications are described below.
 
  
===Three States of LNAPL===
+
==Extraction Methods==
LNAPL can be found in the subsurface in three different states:
+
===High Concentration Waters (> 1 ppm)===
 +
Aqueous samples suspected to contain the compounds of interest at concentrations detectable without any extraction or pre-concentration are suitable for analysis by direct injection. The method deviates from USEPA Method 8330B by adding a pH adjustment and use of MeOH rather than ACN for dilution<ref name= "8330B"/>. The pH adjustment is needed to ensure method accuracy for ionic compounds (like NTO or PA) in basic samples. A solution of 1% HCl/MeOH is added to both acidify and dilute the samples to a final acid concentration of 0.5% (vol/vol) and a final solvent ratio of 1:1 MeOH/H<sub>2</sub>O. The direct injection samples are then ready for analysis.
  
# '''Residual LNAPL''' is trapped and immobile but can undergo composition and phase changes and generate dissolved hydrocarbon plumes in saturated zones and/or vapors in unsaturated zones. The fraction of the total pore space occupied by this discontinuous LNAPL is referred to as the residual saturation, with other phases such as water and air in the remainder of the pore space.
+
===Low Concentration Waters (< 1 ppm)===
# '''Mobile LNAPL''' is LNAPL at greater than the residual saturation. Mobile LNAPL can accumulate in a well and is potentially recoverable, but is not migrating (i.e., the LNAPL body is not expanding).
+
Aqueous samples suspected to contain the compounds of interest at low concentrations require extraction and pre-concentration using solid phase extraction (SPE). The SPE setup described here uses a triple cartridge setup shown in '''Figure 3'''. Briefly, the extraction procedure loads analytes of interest onto the cartridges in this order: Strata<sup><small>TM</small></sup> X, Strata<sup><small>TM</small></sup> X-A, and Envi-Carb<sup><small>TM</small></sup>. Then the cartridge order is reversed, and analytes are eluted via a two-step elution, resulting in 2 extracts (which are combined prior to analysis). Five milliliters of MeOH is used for the first elution, while 5 mL of acidified MeOH (2% HCl) is used for the second elution. The particular SPE cartridges used are noncritical so long as cartridge chemistries are comparable to those above.  
# '''Migrating LNAPL''' is LNAPL at greater than the residual concentration which is observed to expand into previously non-impacted locations over time (e.g., LNAPL appears in a monitoring well that had previously been clean).
 
  
These three LNAPL states can cause different concerns and in some cases require different remediation goals.  
+
===Soils=== 
 +
Soil collection, storage, drying and grinding procedures are identical to the USEPA Method 8330B procedures<ref name= "8330B"/>; however, the solvent extraction procedure differs in the number of sonication steps, sample mass and solvent used. A flow chart of the soil extraction procedure is shown in '''Figure 4'''. Soil masses of approximately 2 g and a sample to solvent ratio of 1:5 (g/mL) are used for soil extraction. The extraction is carried out in a sonication bath chilled below 20 ⁰C and is a two-part extraction, first extracting in MeOH (6 hours) followed by a second sonication in 1:1 MeOH:H<sub>2</sub>O solution (14 hours). The extracts are centrifuged, and the supernatant is filtered through a 0.45 μm PTFE disk filter.  
  
===LNAPL “Apparent Thickness” is a Poor Metric for Risk Management===
+
The solvent volume should generally be 10 mL but if different soil masses are required, solvent volume should be 5 mL/g. The extraction results in 2 separate extracts (MeOH and MeOH:H<sub>2</sub>O) that are combined prior to analysis.
[[File:Newell1w2Fig3.png |thumb|left|600px| Figure 3.  Five LNAPL Thickness Scenarios for five different physical settings<ref name="Sale2018"/>.]]
 
[[File:Newell1w2Fig4.png |thumb|350px| Figure 4.  Apparent LNAPL thickness versus LNAPL transmissivity, showing no correlation<ref name="Hawthorne2015">Hawthorne, J.M., 2015. Nationwide (USA) Statistical Analysis of LNAPL Transmissivity, in: R. Darlington and A.C. Barton (Chairs), Bioremediation and Sustainable Environmental Technologies—2015. Third International Symposium on Bioremediation and Sustainable Environmental Technologies (Miami, FL), page C-017, Battelle Memorial Institute, Columbus, OH.  www.battelle.org/biosymp  [[Media:Hawthorne2015.pdf | Abstract.pdf]]</ref>.]]
 
LNAPL thickness in monitoring wells is often referred to as the “apparent LNAPL thickness” because at first glance this LNAPL thickness might be expected to be the thickness of LNAPL that is in the formation, but in reality it is not well correlated with the thickness of the LNAPL zone in the subsurface for several reasons.
 
  
First, different physical settings can produce different LNAPL thicknesses in monitoring wells. Sale et al. (2018) show five different scenarios that produce very different responses with regard to apparent LNAPL thickness (Figure 3).  Scenario A shows an LNAPL apparent thickness in the monitoring well that is at static equilibrium with LNAPL in an unconfined aquifer.  Scenario B, while also an unconfined aquifer, is comprised of very fine-grained soils that cause the LNAPL thickness in the well to be much higher than in Scenario A.  In Scenario C, the LNAPL has accumulated under a confined unit (likely due to an underground release of LNAPL below the confining unit), and the LNAPL has risen above the groundwater potentiometric surface, leading to a large (and misleading) LNAPL thickness in the monitoring well.  Scenario D, LNAPL in a perched unit, also shows a very different response from the other scenarios. Scenario E, LNAPL in fractured system, shows that the LNAPL can penetrate below the water table, and that LNAPL thickness in a well is dependent on the pressure from accumulation of LNAPL in the fractures<ref name="Sale2018"/>.
+
===Tissues===
 +
Tissue matrices are extracted by 18-hour sonication using a ratio of 1 gram of wet tissue per 5 mL of MeOH. This extraction is performed in a sonication bath chilled below 20 ⁰C and the supernatant (MeOH) is filtered through a 0.45 μm PTFE disk filter.  
  
Second, apparent LNAPL thickness is affected by changes in the groundwater surface elevation (or water table). Generally, when groundwater elevations are higher than typical, the LNAPL thickness in monitoring wells will decrease or go to zero because the groundwater will redistribute any mobile LNAPL into what previously was the unsaturated zone.  During lower groundwater elevation periods, much more of the LNAPL will occur as a continuous phase near the water table, leading to higher LNAPL thicknesses in wells.
+
Due to the complexity of tissue matrices, an additional tissue cleanup step, adapted from prior research, can be used to reduce interferences<ref name="RussellEtAl2014">Russell, A.L., Seiter, J.M., Coleman, J.G., Winstead, B., Bednar, A.J., 2014. Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS. Talanta, 128, pp. 524–530. [https://doi.org/10.1016/j.talanta.2014.02.013 doi: 10.1016/j.talanta.2014.02.013]</ref><ref name="CrouchEtAl2020"/>. The cleanup procedure uses small scale chromatography columns prepared by loading 5 ¾” borosilicate pipettes with 0.2 g activated silica gel (100–200 mesh). The columns are wetted with 1 mL MeOH, which is allowed to fully elute and then discarded prior to loading with 1 mL of extract and collecting in a new amber vial. After the extract is loaded, a 1 mL aliquot of MeOH followed by a 1 mL aliquot of 2% HCL/MeOH is added. This results in a 3 mL silica treated tissue extract. This extract is vortexed and diluted to a final solvent ratio of 1:1 MeOH/H<sub>2</sub>O before analysis.
  
Overall, LNAPL thickness measurements are useful for delineating the extent of mobile LNAPL in the saturated zone and can provide useful data for understanding the vertical distribution of LNAPL in the formation<ref name="Hawthorne2011">Hawthorne, J.M., 2011. Diagnostic Gauge Plots—Simple Yet Powerful LCSM Tools. Applied NAPL Science Review (ANSR), 1(2). [http://naplansr.com/diagnostic-gauge-plots-volume-1-issue-2-february-2011/ Website] [[Media:Hawthorne2011.pdf | Report.pdf]]</ref><ref name="Kirkman2013">Kirkman, A.J., Adamski, M., and Hawthorne, M., 2013. Identification and Assessment of Confined and Perched LNAPL Conditions. Groundwater Monitoring and Remediation, 33 (1), pp. 75–86. [https://doi.org/10.1111/j.1745-6592.2012.01412.x  DOI:10.1111/j.1745-6592.2012.01412.x]</ref>. But LNAPL thickness by itself is a very poor indicator of the feasibility of LNAPL recovery<ref name="LNAPL-2">Interstate Technology and Regulatory Council (ITRC), 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. LNAPL-2. ITRC, LNAPLs Team, Washington, DC. www.itrcweb.org  [[Media:ITRC-LNAPL-2.pdf | Report.pdf]]</ref><ref name="Hawthorne2015"/> (see [[NAPL Mobility]]) (Figure 4). Because there is little correlation between apparent LNAPL thickness and LNAPL mobility, there is also little correlation between apparent thickness and the risk to receptors from the LNAPL.
+
==HPLC-UV and MS Methods==
 
+
The Primary HPLC method uses a Phenomenex Synergi 4 µm Hydro-RP column (80Å, 250 x 4.6 mm), or comparable, and is based on both the HPLC method found in USEPA 8330B and previous work<ref name= "8330B"/><ref name="RussellEtAl2014"/><ref name="CrouchEtAl2020"/>. This separation relies on a reverse phase column and uses a gradient elution, shown in Table 2. Depending on the analyst’s needs and equipment availability, the method has been proven to work with either 0.1% TFA or 0.25% FA (vol/vol) mobile phase. Addition of a guard column like a Phenomenex SecurityGuard AQ C18 pre-column guard cartridge can be optionally used. These optional changes to the method have no impact on the method’s performance.  
===Complete LNAPL Remediation Is Very Challenging===
+
The Secondary HPLC method uses a Restek Pinnacle II Biphenyl 5 µm (150 x 4.6 mm) or comparable column and is intended as a confirmatory method. Like the Primary method, this method can use an optional guard column and utilizes a gradient elution, shown in Table 3.
Sale et al. (2018) described the problems with attaining complete LNAPL remediation this way:
+
 
+
For instruments equipped with a mass spectrometer (MS), a secondary MS method is available and was developed alongside the Primary UV method. The method was designed for use with a single quadrupole MS equipped with an atmospheric pressure chemical ionization (APCI) source, such as an Agilent 6120B. A majority of the analytes, shown in Table 1, are amenable to this MS method, however nitroglycerine (which is covered extensively in USEPA method 8332) and 2-,3-, and 4-nitrotoluene compounds aren’t compatible with the MS method. MS method parameters are shown in Table 4.  
<blockquote>''Experience of the last few decades has taught us: 1) our best efforts often leave some LNAPL in place, and 2) the remaining LNAPL often sustains exceedances of drinking water standards in release areas for extended periods. Entrapment of LNAPLs at residual saturations is a primary factor constraining our success. Other challenges include the low solubility of LNAPL, the complexity of the subsurface geologic environment, access limitations associated with surface structures, and concentration goals that are often three to five orders of magnitude less than typical initial concentrations within LNAPL zones.''<ref name="Sale2018"/></blockquote>
+
 
+
==Summary==
In particular, the discontinuous residual LNAPL cannot be removed (or recovered) by pumping, and ''in situ'' remediation is expensive and not completely effective (see [[LNAPL Remediation Technologies]]). However, many regulatory programs require “LNAPL recovery to the extent practicable.”  The lack of quantitative metrics and the lack of correlation between apparent LNAPL thicknesses and subsurface LNAPL makes this a problematic requirement in many cases and the ITRC (2018) cautions “Thickness or concentration data alone may not provide a sound basis for defining the point at which a cleanup objective is achieved.”<ref name="LNAPL-3"/>  However, Sale et al. (2018) describe metrics such as LNAPL transmissivity, limited/infrequent well thicknesses, decline curve analysis, asymptotic analysis, and comparison to NSZD rates that can be used to determine when LNAPL has been removed the extent practicable<ref name="Sale2018"/>.
+
The extraction methods and instrumental methods in this article build upon prior munitions analytical methods by adding new compounds, combining legacy and insensitive munitions analysis, and expanding usable sample matrices. These methods have been verified through extensive round robin testing and validation, and while the methods are somewhat challenging, they are crucial when simultaneous analysis of both insensitive and legacy munitions is needed.  
 
 
===Attenuation Processes are Active and Important===
 
Both LNAPL source zones and their dissolved phase hydrocarbon plumes are attenuated by biodegradation and other attenuation process.  In the source zone, this attenuation is called [[Natural Source Zone Depletion (NSZD)]] (see also [[Natural Attenuation in Source Zone and Groundwater Plume - Bemidji Crude Oil Spill]]). In the dissolved plume it is called [[Monitored Natural Attenuation (MNA)]] (see also  [[Biodegradation - Hydrocarbons]]).  These processes generally limit the length of dissolved phase hydrocarbon plumes to a few hundred feet<ref name="Newell1998">Newell, C.J., and Connor, J.A., 1998. Characteristics of Dissolved Hydrocarbon Plumes: Results from Four Studies, Version 1.1. American Petroleum Institute, Soil/Groundwater Technical Task Force, Washington, DC. [https://www.enviro.wiki/index.php?title=File:Newell-1998-chararacterization_of_dissolved_Pet._Hydro_Plumes.pdf  Report.pdf]</ref> via processes that have been well known and understood since the mid-1990s.
 
 
 
However, NSZD is “by far, the biggest new idea for LNAPLs in the last decade.”<ref name="Sale2018"/>  Originally, LNAPL bodies were thought to attenuate very slowly via dissolution and volatilization.  In 2006, it was discovered that NSZD rates are orders of magnitude higher than originally thought, largely due to direct biodegradation of LNAPL constituents to methane and carbon dioxide by methanogenic consortiums of naturally occurring bacteria<ref name="Lundegard2006">Lundegard, P.D., and Johnson, P.C., 2006. Source Zone Natural Attenuation at Petroleum Spill Sites—II: Application to a Former Oil Field. Groundwater Monitoring and Remediation. 26(4), pp. 93-106.  [https://doi.org/10.1111/j.1745-6592.2006.00115.x  DOI: 10.1111/j.1745-6592.2006.00115.x]</ref><ref name="Garg2017">Garg, S., Newell, C., Kulkarni, P., King, D., Adamson, D.T., Irianni Renno, M., and Sale, T., 2017. Overview of Natural Source Zone Depletion: Processes, Controlling Factors, and Composition Change. Groundwater Monitoring and Remediation, 37(3), pp. 62-81.  [https://doi.org/10.1111/gwmr.12219 DOI:  10.1111/gwmr.12219] [[Media:Garg2017gwmr.12219.pdf | Report.pdf]]</ref>.  NSZD processes play an important role in risk mitigation and the long-term stability of LNAPL bodies<ref name="Mahler2012">
 
Mahler, N., Sale, T., and Lyverse, M., 2012. A Mass Balance Approach to Resolving LNAPL Stability. Groundwater, 50(6), pp 861-871.  [https://doi.org/10.1111/j.1745-6584.2012.00949.x DOI: 10.1111/j.1745-6584.2012.00949.x]</ref><ref name="LNAPL-3"/>.
 
 
 
===Risk from LNAPL Source Zones Diminishes Over Time===
 
At Early Stage LNAPL sites, the expansion of the LNAPL body is a risk that needs to be addressed. Fortunately, this type of site is relatively rare.  For Middle and Late Stage sites, the primary risks are associated with phase changes (dissolution of the LNAPL forming a dissolved plume and volatilization from the LNAPL or dissolved plume forming hydrocarbon vapors).  As described above, MNA can often control the dissolved phase (see [[Monitored Natural Attenuation (MNA) of Fuels]]), while aerobic biodegradation in the unsaturated zone greatly reduces the vapor intrusion risk from hydrocarbon vapors (see [[Vapor Intrusion - Separation Distances from Petroleum Sources]]).
 
 
 
Understanding LNAPL body mobility and stability is important to understand the potential risks posed by LNAPL.  The relative magnitude of LNAPL mobility can be determined by measuring the LNAPL transmissivity (see [[NAPL Mobility]]).  If the transmissivity is below a threshold level (in the range of 0.1 to 0.8 ft<sup>2</sup>/day) then the LNAPL likely cannot be recovered efficiently by pumping, but above this transmissivity level recovery is feasible<ref name="LNAPL-3"/>.  Michigan’s LNAPL guidance states “if the NAPL has a transmissivity greater than 0.5 ft<sup>2</sup>/day, it is likely that the NAPL can be recovered in a cost-effective and efficient manner unless a demonstration is made to show otherwise.”  Kansas LNAPL guidance requires “recovery of all LNAPL with a transmissivity greater than 0.8 ft<sup>2</sup>/day that can be recovered in an efficient, cost-effective manner.”<ref name="LNAPL-3"/>.  The stability of the entire LNAPL body can be evaluated using statistical tools to determine if migration of LNAPL is occurring<ref name="Hawthorne2013">Hawthorne, J.M., Stone, C.D., Helsel, D., 2013. LNAPL Body Stability Part 2: Daughter Plume Stability via Spatial Moments Analysis. Applied NAPL Science Review (ANSR), 3(5).  [http://naplansr.com/lnapl-body-stability-part-2-daughter-plume-stability-via-spatial-moments-analysis-volume-3-issue-5-september-2013/ Website] [[Media:Hawthorne2013.pdf | Report.pdf]]</ref>.
 
 
 
==Overview of Modern LNAPL Conceptual Site Model==
 
[[File:Newell1w2Fig5.png |thumb|500px| Figure 5.  A higher tier of LNAPL CSM is useful as LNAPL site complexity increases<ref name="LNAPL-3"/>.]]
 
The ITRC (2018) describes the typical evolution of an LCSM over the course of the remediation process which can be broken into three separate stages:
 
* An ''Initial LCSM'' focuses on identifying the LNAPL concerns, such as a risk to health or safety, any LNAPL migration, LNAPL-specific regulations, and physical or aesthetic impacts.
 
* A ''Remedy Selection LCSM'' supports remedial technology evaluation by characterizing aspects of the LNAPL and site subsurface that may impact remedial technology performance.
 
* A ''Design and Performance LCSM'' focuses on presenting the technical information needed to establish remediation objectives, design and implement remedies or control measures, and track progress toward defined remediation endpoints.
 
 
 
One key question when developing an LCSM is “how much data is enough.”  In general, the answer is that the existing data is sufficient for the current stage of the remediation project when it allows the stakeholders to agree on a path forward<ref name="LNAPL-3"/>.  Figure 5 shows that as the level of complexity of a site increases, a higher tier of LCSM is useful to provide enough information for making decisions<ref name="LNAPL-3"/><ref name="ASTM2014a"/>.  The higher tier of information could be higher data density, additional tools for a given line of evidence, or other evaluations.
 
 
 
==LNAPL Concerns, Remediation Goals and Objectives==
 
Finally, the ITRC (2018) provides a methodology for identifying LNAPL concerns, verifying those concerns, selecting LNAPL remediation goals, and determining LNAPL remediation objectives.  Examples of each of these concepts are provided below:
 
 
 
* '''Potential Concerns:'''  Human or ecological risk concerns, fire or explosivity issues, LNAPL migration, LNAPL-specific regulatory concerns, other concerns such as odors or geotechnical issues.
 
* '''Verifying Concerns:'''  Measure LNAPL transmissivity to determine if it is recoverable; measure vertical and horizontal separation distances between buildings and LNAPL bodies to screen for vapor intrusion concerns.
 
* '''Remediation Goals:'''  Reduce mobile LNAPL saturation, abate unacceptable soil concentrations, terminate LNAPL body migration, abate unacceptable constituent concentrations in dissolved and vapor phases.
 
* '''Remediation Objectives:'''  Recover LNAPL to the extent practicable based on transmissivity, reduce soil concentrations to below regulatory limits, stop LNAPL migration with a barrier, contain migrating groundwater plume (if present), reduce groundwater and vapor concentration to acceptable levels.
 
* '''Remediation Technologies:'''  LNAPL Mass Recovery technologies, LNAPL phase change technologies, LNAPL Mass Control technologies, combinations of technologies.
 
 
 
Overall, a LNAPL Conceptual Site Model that integrates key site specific information and current technical knowledge about LNAPL sites in general is instrumental to successful site management, where LNAPL concerns drive remediation goals, goals drive remediation objectives, and the objectives form the basis for the selection of remediation technologies.  
 
  
 
==References==
 
==References==
 
+
<references />
<references/>
 
  
 
==See Also==
 
==See Also==
American Petroleum Institute (API), 2006. API Interactive LNAPL Guide Version 2.0.4. API, Soil and Groundwater Technical Task Force.  [https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/lnapl/interactive-guide Free download from API]
+
*[https://serdp-estcp.mil/focusareas/9f7a342a-1b13-4ce5-bda0-d7693cf2b82d/uxo#subtopics  SERDP/ESTCP Focus Areas – UXO – Munitions Constituents]
 +
*[https://denix.osd.mil/edqw/home/ Environmental Data Quality Workgroup]

Revision as of 15:28, 23 July 2024

Munitions Constituents – Sample Extraction and Analytical Techniques

Munitions Constituents, including insensitive munitions IM), are a broad category of compounds and, in areas where manufactured or used, can be found in a variety of environmental matrices (waters, soil, and tissues). This presents an analytical challenge when a variety of these munitions are to be quantified. This article discusses sample extraction methods for each typical sample matrix (high level water, low level water, soil and tissue) as well as the accompanying HPLC-UV analytical method for 27 compounds of interest (legacy munitions, insensitive munitions, and surrogates).

Related Article(s):

Contributor(s):

  • Dr. Austin Scircle

Key Resource(s):

  • Methods for simultaneous quantification of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices[2]

Introduction

The primary intention of the analytical methods presented here is to support the monitoring of legacy and insensitive munitions contamination on test and training ranges, however legacy and insensitive munitions often accompany each other at demilitarization facilities, manufacturing facilities, and other environmental sites. Energetic materials typically appear on ranges as small, solid particulates and due to their varying functional groups and polarities, can partition in various environmental compartments[3]. To ensure that contaminants are monitored and controlled at these sites and to sustainably manage them a variety of sample matrices (surface or groundwater, process waters, soil, and tissues) must be considered. (Process water refers to water used during industrial manufacturing or processing of legacy and insensitive munitions.) Furthermore, additional analytes must be added to existing methodologies as the usage of IM compounds changes and as new degradation compounds are identified. Of note, relatively new IM formulations containing NTO, DNAN, and NQ are seeing use in IMX-101, IMX-104, Pax-21 and Pax-41 (Table 1)[4][5].

Sampling procedures for legacy and insensitive munitions are identical and utilize multi-increment sampling procedures found in USEPA Method 8330B Appendix A[1]. Sample hold times, subsampling and quality control requirements are also unchanged. The key differences lie in the extraction methods and instrumental methods. Briefly, legacy munitions analysis of low concentration waters uses a single cartridge reverse phase SPE procedure, and acetonitrile (ACN) is used for both extraction and elution for aqueous and solid samples[1][6]. An isocratic separation via reversed-phase C-18 column with 50:50 methanol:water mobile phase or a C-8 column with 15:85 isopropanol:water mobile phase is used to separate legacy munitions[1]. While these procedures are sufficient for analysis of legacy munitions, alternative solvents, additional SPE cartridges, and a gradient elution are all required for the combined analysis of legacy and insensitive munitions.

Previously, analysis of legacy and insensitive munitions required multiple analytical techniques, however the methods presented here combine the two munitions categories resulting in an HPLC-UV method and accompanying extraction methods for a variety of common sample matrices. A secondary HPLC-UV method and a HPLC-MS method were also developed as confirmatory methods. The methods discussed in this article were validated extensively by single-blind round robin testing and subsequent statistical treatment as part of ESTCP ER19-5078. Wherever possible, the quality control criteria in the Department of Defense Quality Systems Manual for Environmental Laboratories were adhered to[7]. Analytes included in these methods are found in Table 1.

The chromatograms produced by the primary and secondary HPLC-UV methods are shown in Figure 1 and Figure 2, respectively. Chromatograms for each detector wavelength used are shown (315, 254, and 210 nm).

Extraction Methods

High Concentration Waters (> 1 ppm)

Aqueous samples suspected to contain the compounds of interest at concentrations detectable without any extraction or pre-concentration are suitable for analysis by direct injection. The method deviates from USEPA Method 8330B by adding a pH adjustment and use of MeOH rather than ACN for dilution[1]. The pH adjustment is needed to ensure method accuracy for ionic compounds (like NTO or PA) in basic samples. A solution of 1% HCl/MeOH is added to both acidify and dilute the samples to a final acid concentration of 0.5% (vol/vol) and a final solvent ratio of 1:1 MeOH/H2O. The direct injection samples are then ready for analysis.

Low Concentration Waters (< 1 ppm)

Aqueous samples suspected to contain the compounds of interest at low concentrations require extraction and pre-concentration using solid phase extraction (SPE). The SPE setup described here uses a triple cartridge setup shown in Figure 3. Briefly, the extraction procedure loads analytes of interest onto the cartridges in this order: StrataTM X, StrataTM X-A, and Envi-CarbTM. Then the cartridge order is reversed, and analytes are eluted via a two-step elution, resulting in 2 extracts (which are combined prior to analysis). Five milliliters of MeOH is used for the first elution, while 5 mL of acidified MeOH (2% HCl) is used for the second elution. The particular SPE cartridges used are noncritical so long as cartridge chemistries are comparable to those above.

Soils

Soil collection, storage, drying and grinding procedures are identical to the USEPA Method 8330B procedures[1]; however, the solvent extraction procedure differs in the number of sonication steps, sample mass and solvent used. A flow chart of the soil extraction procedure is shown in Figure 4. Soil masses of approximately 2 g and a sample to solvent ratio of 1:5 (g/mL) are used for soil extraction. The extraction is carried out in a sonication bath chilled below 20 ⁰C and is a two-part extraction, first extracting in MeOH (6 hours) followed by a second sonication in 1:1 MeOH:H2O solution (14 hours). The extracts are centrifuged, and the supernatant is filtered through a 0.45 μm PTFE disk filter.

The solvent volume should generally be 10 mL but if different soil masses are required, solvent volume should be 5 mL/g. The extraction results in 2 separate extracts (MeOH and MeOH:H2O) that are combined prior to analysis.

Tissues

Tissue matrices are extracted by 18-hour sonication using a ratio of 1 gram of wet tissue per 5 mL of MeOH. This extraction is performed in a sonication bath chilled below 20 ⁰C and the supernatant (MeOH) is filtered through a 0.45 μm PTFE disk filter.

Due to the complexity of tissue matrices, an additional tissue cleanup step, adapted from prior research, can be used to reduce interferences[8][2]. The cleanup procedure uses small scale chromatography columns prepared by loading 5 ¾” borosilicate pipettes with 0.2 g activated silica gel (100–200 mesh). The columns are wetted with 1 mL MeOH, which is allowed to fully elute and then discarded prior to loading with 1 mL of extract and collecting in a new amber vial. After the extract is loaded, a 1 mL aliquot of MeOH followed by a 1 mL aliquot of 2% HCL/MeOH is added. This results in a 3 mL silica treated tissue extract. This extract is vortexed and diluted to a final solvent ratio of 1:1 MeOH/H2O before analysis.

HPLC-UV and MS Methods

The Primary HPLC method uses a Phenomenex Synergi 4 µm Hydro-RP column (80Å, 250 x 4.6 mm), or comparable, and is based on both the HPLC method found in USEPA 8330B and previous work[1][8][2]. This separation relies on a reverse phase column and uses a gradient elution, shown in Table 2. Depending on the analyst’s needs and equipment availability, the method has been proven to work with either 0.1% TFA or 0.25% FA (vol/vol) mobile phase. Addition of a guard column like a Phenomenex SecurityGuard AQ C18 pre-column guard cartridge can be optionally used. These optional changes to the method have no impact on the method’s performance. The Secondary HPLC method uses a Restek Pinnacle II Biphenyl 5 µm (150 x 4.6 mm) or comparable column and is intended as a confirmatory method. Like the Primary method, this method can use an optional guard column and utilizes a gradient elution, shown in Table 3.

For instruments equipped with a mass spectrometer (MS), a secondary MS method is available and was developed alongside the Primary UV method. The method was designed for use with a single quadrupole MS equipped with an atmospheric pressure chemical ionization (APCI) source, such as an Agilent 6120B. A majority of the analytes, shown in Table 1, are amenable to this MS method, however nitroglycerine (which is covered extensively in USEPA method 8332) and 2-,3-, and 4-nitrotoluene compounds aren’t compatible with the MS method. MS method parameters are shown in Table 4.

Summary

The extraction methods and instrumental methods in this article build upon prior munitions analytical methods by adding new compounds, combining legacy and insensitive munitions analysis, and expanding usable sample matrices. These methods have been verified through extensive round robin testing and validation, and while the methods are somewhat challenging, they are crucial when simultaneous analysis of both insensitive and legacy munitions is needed.

References

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 United States Environmental Protection Agency (USEPA), 2006. EPA Method 8330B (SW-846) Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Revision 2. USEPA Website    Method 8330B.pdf
  2. ^ 2.0 2.1 2.2 Crouch, R.A., Smith, J.C., Stromer, B.S., Hubley, C.T., Beal, S., Lotufo, G.R., Butler, A.D., Wynter, M.T., Russell, A.L., Coleman, J.G., Wayne, K.M., Clausen, J.L., Bednar, A.J., 2020. Methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices. Talanta, 217, Article 121008. doi: 10.1016/j.talanta.2020.121008    Open Access Manuscript.pdf
  3. ^ Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp. 932-941. doi: 10.1002/prep.201700089
  4. ^ Mainiero, C. 2015. Picatinny Employees Recognized for Insensitive Munitions. U.S. Army, Picatinny Arsenal Public Affairs. Open Access Press Release
  5. ^ Frem, D., 2022. A Review on IMX-101 and IMX-104 Melt-Cast Explosives: Insensitive Formulations for the Next-Generation Munition Systems. Propellants, Explosives, Pyrotechnics, 48(1), e202100312. doi: 10.1002/prep.202100312
  6. ^ United States Environmental Protection Agency (USEPA), 2007. EPA Method 3535A (SW-846) Solid-Phase Extraction (SPE), Revision 1. USEPA Website    Method 3535A.pdf
  7. ^ US Department of Defense and US Department of Energy, 2021. Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.4. 387 pages. Free Download    QSM Version 5.4.pdf
  8. ^ 8.0 8.1 Russell, A.L., Seiter, J.M., Coleman, J.G., Winstead, B., Bednar, A.J., 2014. Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS. Talanta, 128, pp. 524–530. doi: 10.1016/j.talanta.2014.02.013

See Also