Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(PFAS Ex Situ Water Treatment)
(Extraction Methods)
 
(707 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Supercritical Water Oxidation (SCWO)==
+
==Munitions Constituents – Sample Extraction and Analytical Techniques==  
Supercritical water oxidation (SCWO) is a single step wet oxidation process that transforms organic matter into water, carbon dioxide and, depending on the waste undergoing treatment, an inert mineral solid residue. The process is highly effective and can treat a variety of wet wastes without dewatering. The SCWO technology allows for the complete destruction of persistent and toxic organic contaminants such as [[perfluoroalkyl and polyfluoroalkyl substances (PFAS)]], [[1,4-dioxane]], and many more.  
+
Munitions Constituents, including [[Wikipedia: Insensitive munition | insensitive munitions]] IM), are a broad category of compounds and, in areas where manufactured or used, can be found in a variety of environmental matrices (waters, soil, and tissues). This presents an analytical challenge when a variety of these munitions are to be quantified. This article discusses sample extraction methods for each typical sample matrix (high level water, low level water, soil and tissue) as well as the accompanying [[Wikipedia: High-performance liquid chromatography | HPLC]]-UV analytical method for 27 compounds of interest (legacy munitions, insensitive munitions, and surrogates).  
 +
 
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
  
* [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
+
*[[Munitions Constituents]]
* [[PFAS Transport and Fate]]
 
* [[PFAS Sources]]
 
* [[PFAS Soil Remediation Technologies]]
 
  
'''Contributor(s):''' [[Dr. Scott Grieco]] and [[James Hatton]]
+
'''Contributor(s):'''  
 +
 
 +
*Dr. Austin Scircle
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
  
*[https://www.waterrf.org/resource/treatment-mitigation-strategies-poly-and-perfluorinated-chemicals Water Research Foundation (Drinking Water): Treatment Mitigation Strategies for PFAS]<ref name="Dickenson2016">Dickenson, E. and Higgins, C., 2016. Treatment Mitigation Strategies for Poly- and Perfluoroalkyl Substances, Report Number 4322. Water Research Foundation, Denver, Colorado. 123 pages. ISBN 978-1-60573-234-3</ref>  
+
*[https://www.epa.gov/sites/default/files/2015-07/documents/epa-8330b.pdf USEPA Method 8330B]<ref name= "8330B">United States Environmental Protection Agency (USEPA), 2006. EPA Method 8330B (SW-846) Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Revision 2. [https://www.epa.gov/esam/epa-method-8330b-sw-846-nitroaromatics-nitramines-and-nitrate-esters-high-performance-liquid USEPA Website]&nbsp; &nbsp;[[Media: epa-8330b.pdf | Method 8330B.pdf]]</ref>
 +
 
 +
*Methods for simultaneous quantification of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices<ref name="CrouchEtAl2020">Crouch, R.A., Smith, J.C., Stromer, B.S., Hubley, C.T., Beal, S., Lotufo, G.R., Butler, A.D., Wynter, M.T., Russell, A.L., Coleman, J.G., Wayne, K.M., Clausen, J.L., Bednar, A.J., 2020. Methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices. Talanta, 217, Article 121008. [https://doi.org/10.1016/j.talanta.2020.121008 doi: 10.1016/j.talanta.2020.121008]&nbsp; &nbsp;[[Media: CrouchEtAl2020.pdf | Open Access Manuscript.pdf]]</ref>
 +
 
 +
==Introduction==
 +
The primary intention of the analytical methods presented here is to support the monitoring of legacy and insensitive munitions contamination on test and training ranges, however legacy and insensitive munitions often accompany each other at demilitarization facilities, manufacturing facilities, and other environmental sites. Energetic materials typically appear on ranges as small, solid particulates and due to their varying functional groups and polarities, can partition in various environmental compartments<ref>Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp. 932-941. [https://doi.org/10.1002/prep.201700089 doi: 10.1002/prep.201700089]</ref>. To ensure that contaminants are monitored and controlled at these sites and to sustainably manage them a variety of sample matrices (surface or groundwater, process waters, soil, and tissues) must be considered. (Process water refers to water used during industrial manufacturing or processing of legacy and insensitive munitions.) Furthermore, additional analytes must be added to existing methodologies as the usage of IM compounds changes and as new degradation compounds are identified.  Of note, relatively new IM formulations containing NTO, DNAN, and NQ are seeing use in [[Wikipedia: IMX-101 | IMX-101]], IMX-104, Pax-21 and Pax-41 (Table 1)<ref>Mainiero, C. 2015. Picatinny Employees Recognized for Insensitive Munitions. U.S. Army, Picatinny Arsenal Public Affairs.  [https://www.army.mil/article/148873/picatinny_employees_recognized_for_insensitive_munitions Open Access Press Release]</ref><ref>Frem, D., 2022. A Review on IMX-101 and IMX-104 Melt-Cast Explosives: Insensitive Formulations for the Next-Generation Munition Systems. Propellants, Explosives, Pyrotechnics, 48(1), e202100312. [https://doi.org/10.1002/prep.202100312 doi: 10.1002/prep.202100312]</ref>.
  
*[https://pfas-1.itrcweb.org/12-treatment-technologies/#12_2 Interstate Technical and Regulatory Council: PFAS Liquids Treatment Technologies]<ref name="ITRC2020">Interstate Technology and Regulatory Council (ITRC), 2020. PFAS Technical and Regulatory Guidance Document and Fact Sheets, PFAS-1. PFAS Team, Washington, DC.  [https://pfas-1.itrcweb.org/ Website]&nbsp;&nbsp; [[Media: ITRC_PFAS-1.pdf | Report.pdf]]</ref>
+
Sampling procedures for legacy and insensitive munitions are identical and utilize multi-increment sampling procedures found in USEPA Method 8330B Appendix A<ref name= "8330B"/>. Sample hold times, subsampling and quality control requirements are also unchanged. The key differences lie in the extraction methods and instrumental methods. Briefly, legacy munitions analysis of low concentration waters uses a single cartridge reverse phase [[Wikipedia: Solid-phase extraction | SPE]] procedure, and [[Wikipedia: Acetonitrile | acetonitrile]] (ACN) is used for both extraction and [[Wikipedia: Elution | elution]] for aqueous and solid samples<ref name= "8330B"/><ref>United States Environmental Protection Agency (USEPA), 2007. EPA Method 3535A (SW-846) Solid-Phase Extraction (SPE), Revision 1. [https://www.epa.gov/esam/epa-method-3535a-sw-846-solid-phase-extraction-spe USEPA Website]&nbsp; &nbsp;[[Media: epa-3535a.pdf | Method 3535A.pdf]]</ref>. An [[Wikipedia: High-performance_liquid_chromatography#Isocratic_and_gradient_elution | isocratic]] separation via reversed-phase C-18 column with 50:50 methanol:water mobile phase or a C-8 column with 15:85 isopropanol:water mobile phase is used to separate legacy munitions<ref name= "8330B"/>. While these procedures are sufficient for analysis of legacy munitions, alternative solvents, additional SPE cartridges, and a gradient elution are all required for the combined analysis of legacy and insensitive munitions.   
  
*[https://www.sciencedirect.com/science/article/pii/S0301479717307934 Novel treatment technologies for PFAS compounds: A critical review.]<ref name="Kucharzyk2017"> Kucharzyk, K.H., Darlington, R., Benotti, M., Deeb, R. and Hawley, E., 2017. Novel treatment technologies for PFAS compounds: A critical review. Journal of Environmental Management, 204(2), pp. 757-764. [https://doi.org/10.1016/j.jenvman.2017.08.016 DOI: 10.1016/j.jenvman.2017.08.016]&nbsp;&nbsp; Manuscript available from: [https://www.researchgate.net/profile/Katarzyna_kate_Kucharzyk/publication/319125507_Novel_treatment_technologies_for_PFAS_compounds_A_critical_review/links/5a06590b4585157013a3be77/Novel-treatment-technologies-for-PFAS-compounds-A-critical-review.pdf ResearchGate].</ref>
+
Previously, analysis of legacy and insensitive munitions required multiple analytical techniques, however the methods presented here combine the two munitions categories resulting in an HPLC-UV method and accompanying extraction methods for a variety of common sample matrices. A secondary HPLC-UV method and a HPLC-MS method were also developed as confirmatory methods. The methods discussed in this article were validated extensively by single-blind round robin testing and subsequent statistical treatment as part of ESTCP [https://serdp-estcp.mil/projects/details/d05c1982-bbfa-42f8-811d-51b540d7ebda ER19-5078]. Wherever possible, the quality control criteria in the Department of Defense Quality Systems Manual for Environmental Laboratories were adhered to<ref>US Department of Defense and US Department of Energy, 2021. Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.4. 387 pages. [https://www.denix.osd.mil/edqw/denix-files/sites/43/2021/10/QSM-Version-5.4-FINAL.pdf Free Download]&nbsp; &nbsp;[[Media: QSM-Version-5.4.pdf | QSM Version 5.4.pdf]]</ref>. Analytes included in these methods are found in Table 1.
  
*[https://www.liebertpub.com/doi/abs/10.1089/ees.2016.0233 Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water]<ref name="Merino2016">Merino, N., Qu, Y., Deeb, R.A., Hawley, E.L., Hoffmann, M.R., and Mahendra, S., 2016. Degradation and Removal Methods for Perfluoroalkyl and Polyfluoroalkyl Substances in Water. Environmental Engineering Science, 33(9), pp. 615-649. [https://doi.org/10.1089/ees.2016.0233 DOI: 10.1089/ees.2016.0233]</ref>
+
The chromatograms produced by the primary and secondary HPLC-UV methods are shown in Figure 1 and Figure 2, respectively. Chromatograms for each detector wavelength used are shown (315, 254, and 210 nm).
 +
 
 +
==Extraction Methods==
 +
===High Concentration Waters (> 1 ppm)===
 +
Aqueous samples suspected to contain the compounds of interest at concentrations detectable without any extraction or pre-concentration are suitable for analysis by direct injection. The method deviates from USEPA Method 8330B by adding a pH adjustment and use of MeOH rather than ACN for dilution<ref name= "8330B"/>. The pH adjustment is needed to ensure method accuracy for ionic compounds (like NTO or PA) in basic samples. A solution of 1% HCl/MeOH is added to both acidify and dilute the samples to a final acid concentration of 0.5% (vol/vol) and a final solvent ratio of 1:1 MeOH/H2O. The direct injection samples are then ready for analysis.
 +
 
 +
===Low Concentration Waters (< 1 ppm)===
 +
 
 +
Aqueous samples suspected to contain the compounds of interest at low concentrations require extraction and pre-concentration using solid phase extraction (SPE). The SPE setup described here uses a triple cartridge setup shown in '''Figure 3'''. Briefly, the extraction procedure loads analytes of interest onto the cartridges in this order: Strata<sup><small>TM</small></sup> X, Strata<sup><small>TM</small></sup> X-A, and Envi-Carb<sup><small>TM</small></sup>. Then the cartridge order is reversed, and analytes are eluted via a two-step elution, resulting in 2 extracts (which are combined prior to analysis). Five milliliters of MeOH is used for the first elution, while 5 mL of acidified MeOH (2% HCl) is used for the second elution. The particular SPE cartridges used are noncritical so long as cartridge chemistries are comparable to those above.
 +
 
 +
===Soils=== 
 +
Soil collection, storage, drying and grinding procedures are identical to the USEPA Method 8330B procedures<ref name= "8330B"/>; however, the solvent extraction procedure differs in the number of sonication steps, sample mass and solvent used. A flow chart of the soil extraction procedure is shown in '''Figure 4'''. Soil masses of approximately 2 g and a sample to solvent ratio of 1:5 (g/mL) are used for soil extraction. The extraction is carried out in a sonication bath chilled below 20 ⁰C and is a two-part extraction, first extracting in MeOH (6 hours) followed by a second sonication in 1:1 MeOH:H<sub>2</sub>O solution (14 hours). The extracts are centrifuged, and the supernatant is filtered through a 0.45 μm PTFE disk filter.  
 +
 
 +
The solvent volume should generally be 10 mL but if different soil masses are required, solvent volume should be 5 mL/g. The extraction results in 2 separate extracts (MeOH and MeOH:H2O) that are combined prior to analysis.
 +
 
 +
===Tissues===
 +
 
 +
Tissue matrices are extracted by 18-hour sonication using a ratio of 1 gram of wet tissue per 5 mL of MeOH. This extraction is performed in a sonication bath chilled below 20 ⁰C and the supernatant (MeOH) is filtered through a 0.45 μm PTFE disk filter.  
 +
 
 +
Due to the complexity of tissue matrices, an additional tissue cleanup step, adapted from prior research, can be used to reduce interferences<ref name="RussellEtAl2014">Russell, A.L., Seiter, J.M., Coleman, J.G., Winstead, B., Bednar, A.J., 2014. Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS. Talanta, 128, pp. 524–530. [https://doi.org/10.1016/j.talanta.2014.02.013 doi: 10.1016/j.talanta.2014.02.013]</ref><ref name="CrouchEtAl2020"/>. The cleanup procedure uses small scale chromatography columns prepared by loading 5 ¾” borosilicate pipettes with 0.2 g activated silica gel (100–200 mesh). The columns are wetted with 1 mL MeOH, which is allowed to fully elute and then discarded prior to loading with 1 mL of extract and collecting in a new amber vial. After the extract is loaded, a 1 mL aliquot of MeOH followed by a 1 mL aliquot of 2% HCL/MeOH is added. This results in a 3 mL silica treated tissue extract. This extract is vortexed and diluted to a final solvent ratio of 1:1 MeOH/H<sub>2</sub>O before analysis.
  
==Established PFAS Treatment Technologies==
 
Three technologies are well demonstrated for removal of [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] from drinking water and non-potable groundwater (as described below):
 
 
   
 
   
* membrane filtration including [[wikipedia: Reverse osmosis | reverse osmosis (RO)]] and [[Wikipedia: Nanofiltration | nanofiltration (NF)]]
 
* granular [[Wikipedia: Activated carbon | activated carbon]] (GAC) and powdered activated carbon (PAC) adsorption
 
* [[wikipedia: Ion_exchange | anion exchange (IX)]] 
 
  
However, these technologies are less demonstrated for removal of PFAS from more complex matrices such as wastewater and leachate. 
 
Site-specific considerations that affect the selection of optimum treatment technologies for a given site include water chemistry, required flow rate, treatment criteria, waste residual generation, residual disposal options, and operational complexity.  Treatability studies with site water are highly recommended because every site has different factors that may affect engineering design for these technologies.
 
  
===Membrane Filtration===
+
Most federal, state, and local regulatory guidance for assessing and mitigating the [[Vapor Intrusion (VI) | vapor intrusion]] pathway reflects USEPA’s ''Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air''<ref name="USEPA2015">USEPA, 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER Publication No. 9200.2-154, 267 pages. [https://www.epa.gov/vaporintrusion/technical-guide-assessing-and-mitigating-vapor-intrusion-pathway-subsurface-vapor USEPA Website]&nbsp;&nbsp; [//www.enviro.wiki/images/0/06/USEPA2015.pdf  Report.pdf]</ref>. The paradigm outlined by that guidance includes: 1) a preliminary and mostly qualitative analysis that looks for site conditions that suggest vapor intrusion might occur (e.g., the presence of vapor-forming chemicals in close proximity to buildings); 2) a multi-step and more detailed quantitative screening analysis that involves site-specific data collection and their comparison to screening levels to identify buildings of potential VI concern; and 3) selection and design of mitigation systems or continued monitoring, as needed. With respect to (2), regulatory guidance typically recommends consideration of “multiple lines of evidence” in decision-making<ref name="USEPA2015" /><ref>NJDEP, 2021. Vapor Intrusion Technical Guidance, Version 5.0. New Jersey Department of Environmental Protection, Trenton, NJ. [https://dep.nj.gov/srp/guidance/vapor-intrusion/vig/ Website]&nbsp;&nbsp; [//www.enviro.wiki/images/e/ee/NJDEP2021.pdf  Guidance Document.pdf]</ref>, with typical lines-of-evidence being groundwater, soil gas, sub-slab soil gas, and/or indoor air concentrations.  Of those, soil gas measurements and/or measured short-term indoor air concentrations can be weighted heavily, and therefore decision making might not be completed without them. Effective evaluation of VI risk from sub-slab and/or soil gas measurements would require an unknown building-specific attenuation factor, but there is also uncertainty as to whether or not indoor air data is representative of maximum and/or long-term average indoor concentrations. Indoor air data can be confounded by indoor contaminant sources because the number of samples is typically small, indoor concentrations can vary with time, and because a number of household products can emit the chemicals being measured. When conducting VI pathway assessments in neighborhoods where it is impractical to assess all buildings, the EPA recommends following a “worst first” investigational approach.
[[File: revOsmosisPlant.png | thumb | 500px | Figure 1. A RO municipal drinking water plant in Arizona]]  
+
 
Given their ability to remove dissolved contaminants at a molecular size level, RO and some NF membranes can be highly effective for PFAS removal. For RO systems (Figure 1), several studies have demonstrated effective removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) (see [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] for nomenclature) from drinking water with removal rates well above 90%<ref name="Tang2006">Tang, C.Y., Fu, Q.S., Robertson, A.P., Criddle, C.S., and Leckie, J.O., 2006. Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environmental Science and Technology, 40(23), pp. 7343-7349.   [https://doi.org/10.1021/es060831q DOI: 10.1021/es060831q]</ref><ref name="Flores2013">Flores, C., Ventura, F., Martin-Alonso, J., and Caixach, J., 2013. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in NE Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Science of the Total environment, 461, 618-626. [https://doi.org/10.1016/j.scitotenv.2013.05.026 DOI: 10.1016/j.scitotenv.2013.05.026]</ref><ref name="Appleman2014">Appleman, T.D., Higgins, C.P., Quiñones, O., Vanderford, B.J., Kolstad, C., Zeigler-Holady, J.C., and Dickenson, E.R., 2014. Treatment of poly- and perfluoroalkyl substances in US full-scale water treatment systems. Water Research, 51, pp. 246-255. [https://doi.org/10.1016/j.watres.2013.10.067 DOI: 10.1016/j.watres.2013.10.067]</ref>. RO potable water reuse treatment systems implemented in California have also demonstrated effective PFOS and PFOA removal as reported by the Water Research Foundation (WRF)<ref name="Dickenson2016"/>. Analysis of permeate at both sites referenced by the WRF confirmed that short and long chain PFAS concentrations in the treated water were reduced to levels below test method reporting limits.
+
The limitations of this approach, as practiced, are the following:
 +
 
 +
*Decisions are rarely made without indoor air data and generally, seasonal sampling is required, delaying decision making.
 +
*The collection of a robust indoor air data set that adequately characterizes long term indoor air concentrations could take years given the typical frequency of data collection and the most common methods of sample collection (e.g., 24-hour samples).  Therefore, indoor air sampling might continue indefinitely at some sites.
 +
*The “worst first” buildings might not be identified correctly by the logic outlined in USEPA’s 2015 guidance and the most impacted buildings might not even be located over a groundwater plume.  Recent studies have shown [[Vapor Intrusion – Sewers and Utility Tunnels as Preferential Pathways |VI impacts in homes as a result of sewer and other subsurface piping connections]], which are not explicitly considered nor easily characterized through conventional VI pathway assessment<ref> Beckley, L, McHugh, T., 2020. A Conceptual Model for Vapor Intrusion from Groundwater Through Sewer Lines. Science of the Total Environment, 698, Article 134283. [https://doi.org/10.1016/j.scitotenv.2019.134283 doi: 10.1016/j.scitotenv.2019.134283]&nbsp;&nbsp; [//www.enviro.wiki/images/4/4e/BeckleyMcHugh2020.pdf  Open Access Article]</ref><ref name="GuoEtAl2015">Guo, Y., Holton, C., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P.C., 2015. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations. Environmental Science and Technology, 49(22), pp. 13472–13482. [https://doi.org/10.1021/acs.est.5b03564 doi: 10.1021/acs.est.5b03564]</ref><ref name="McHughEtAl2017">McHugh, T., Beckley, L., Sullivan, T., Lutes, C., Truesdale, R., Uppencamp, R., Cosky, B., Zimmerman, J., Schumacher, B., 2017. Evidence of a Sewer Vapor Transport Pathway at the USEPA Vapor Intrusion Research Duplex. Science of the Total Environment, pp. 598, 772-779. [https://doi.org/10.1016/j.scitotenv.2017.04.135 doi: 10.1016/j.scitotenv.2017.04.135]&nbsp;&nbsp; [//www.enviro.wiki/images/6/63/McHughEtAl2017.pdf  Open Access Manuscipt]</ref><ref name="McHughBeckley2018">McHugh, T., Beckley, L., 2018. Sewers and Utility Tunnels as Preferential Pathways for Volatile Organic Compound Migration into Buildings: Risk Factors and Investigation Protocol. ESTCP ER-201505, Final Report. [https://serdp-estcp.mil/projects/details/f12abf80-5273-4220-b09a-e239d0188421 Project Website]&nbsp;&nbsp; [//www.enviro.wiki/images/5/55/2018b-McHugh-ER-201505_Conceptual_Model.pdf  Final Report.pdf]</ref><ref name="RiisEtAl2010">Riis, C., Hansen, M.H., Nielsen, H.H., Christensen, A.G., Terkelsen, M., 2010. Vapor Intrusion through Sewer Systems: Migration Pathways of Chlorinated Solvents from Groundwater to Indoor Air. Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May, Monterey, CA. Battelle Memorial Institute. ISBN 978-0-9819730-2-9. [https://www.battelle.org/conferences/battelle-conference-proceedings Website]&nbsp;&nbsp; [//www.enviro.wiki/images/9/95/2010-Riis-Migratioin_pathways_of_Chlorinated_Solvents.pdf  Report.pdf]</ref>.
 +
*The presumptive remedy for VI mitigation (sub-slab depressurization) may not be effective for all VI scenarios (e.g., those involving vapor migration to indoor spaces via sewer connections).
 
   
 
   
Full-scale studies using larger effective pore size NF membranes for PFAS removal are limited in number but are promising since NF systems are somewhat less costly than RO and may be nearly as effective in removing PFAS.  Recent laboratory or pilot studies have shown good performance of NF membranes<ref name="Steinle-Darling2008">Steinle-Darling, E., and Reinhard, M., 2008. Nanofiltration for Trace Organic Contaminant Removal: Structure, Solution, and Membrane Fouling Effects on the Rejection of Perfluorochemicals. Environmental Science and Technology, 42(14), pp. 5292-5297.  [https://doi.org/10.1021/es703207s DOI: 10.1021/es703207s]&nbsp;&nbsp; Free download from: [https://d1wqtxts1xzle7.cloudfront.net/48926882/es703207s20160918-21142-1xmqco5.pdf?1474189169=&response-content-disposition=inline%3B+filename%3DNanofiltration_for_Trace_Organic_Contami.pdf&Expires=1613000850&Signature=N-ZvvjOJX3TSOQzg7od3Q0LulNSZOqqjfummVEUfmiYlC3VasS4FuBHOgY52Xy~7FrKbOLhx0xx8QHdUsR~fbRTMQNXhiqbEslnU2gda2EcZHMMJj0mf-01wIA3jFIywA7IIabmTd3uMUGsIfT1D0PrGY00RmprYIQBoG3Dg~KjoizdfxYfvEgdZw2C~7D47pPiwMSnavZiGuvO0~dbRF8nawL7Prg91xt5BFTNUQQiIrIlMWc4PhVjzE5Su2CUZqnNlYdAW5Ck7B9lKmmVMPiOgz07vFnyp7m-q4UK3woa~aBFW9Wp~hjqN6vfohn8Hocv5oMpZNamhu8vBbPilKw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA Academia].</ref><ref name="Appleman2013">Appleman, T.D., Dickenson, E.R., Bellona, C., and Higgins, C.P., 2013. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. Journal of Hazardous Materials, 260, 740-746.  [https://doi.org/10.1016/j.jhazmat.2013.06.033 DOI: 10.1016/j.jhazmat.2013.06.033]</ref><ref name="Soriano2017">Soriano, Á., Gorri, D., and Urtiaga, A., 2017. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Research, 112, 147-156.  [https://doi.org/10.1016/j.watres.2017.01.043 DOI: 10.1016/j.watres.2017.01.043]&nbsp;&nbsp; [[Media: Soriano2017.pdf | Author’s Manuscript.]]</ref><ref name="Zeng2017">Zeng, C., Tanaka, S., Suzuki, Y., Yukioka, S., and Fujii, S., 2017. Rejection of Trace Level Perfluorohexanoic Acid (PFHxA) in Pure Water by Loose Nanofiltration Membrane. Journal of Water and Environment Technology, 15(3), pp. 120-127.  [https://doi.org/10.2965/jwet.16-072 DOI: 10.2965/jwet.16-072]&nbsp;&nbsp; Free download from: [https://www.jstage.jst.go.jp/article/jwet/15/3/15_16-072/_pdf J-STAGE]</ref><ref name="Wang2018">Wang, J., Wang, L., Xu, C., Zhi, R., Miao, R., Liang, T., Yue, X., Lv, Y. and Liu, T., 2018. Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants. Chemical Engineering Journal, 332, pp. 787-797.  [https://doi.org/10.1016/j.cej.2017.09.061 DOI: 10.1016/j.cej.2017.09.061]</ref>.
+
The '''VI Diagnosis Toolkit''' components were developed considering these limitations as well as more recent knowledge gained through research, development, and validation projects funded by SERDP and ESTCP.
 +
 
 +
==The VI Diagnosis Toolkit Components==
 +
[[File:DahlenFig1.png|thumb|450px|Figure 1. Vapor intrusion pathway conceptualization considering “alternate VI pathways”, including “pipe flow
 +
VI” and “sewer VI” pathways<ref name="JohnsonEtAl2020" />.]]
 +
The primary components of the VI Diagnosis Toolkit and their uses include:
 +
 
 +
*'''External VI source strength screening''' to identify buildings most likely to be impacted by VI at levels warranting building-specific testing.
 +
*'''Indoor air source screening''' to locate and remove indoor air sources that might confound building specific VI pathway assessment.
 +
*'''Controlled pressurization method (CPM)''' testing to quickly (in a few days or less) measure the worst-case indoor air impact likely to be caused by VI under natural conditions in specific buildings. CPM tests can also be used to identify the presence of indoor air sources and diagnose active VI pathways.
 +
*'''Passive indoor sampling''' for determining long-term average indoor air concentrations under natural VI conditions and/or for verifying mitigation system effectiveness in buildings that warrant VI mitigation.
 +
*'''Comprehensive VI conceptual model development and refinement''' to ensure that appropriate monitoring, investigation, and mitigation strategies are being selected (Figure 1).
 +
 
 +
Expanded discussions for each of these are given below.
  
Although membrane RO and NF processes are generally capable of providing uniform removal rates relative to short and long chain PFAS compounds (see [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] for nomenclature), other aspects of these treatment technologies are more challenging:
+
'''External VI source strength screening''' identifies those buildings that warrant more intrusive building-specific assessments, using data collected exterior to the buildings. The use of groundwater and/or soil gas concentration data for building screening has been part of VI pathway assessments for some time and their use is discussed in many regulatory guidance documents. Typically, the measured concentrations are compared to relevant screening levels derived via modeling or empirical analyses from indoor air concentrations of concern. 
  
* Membranes must be flushed and cleaned periodically, such that overall water recovery rates (process water volumes consumed, wasted, and lost vs. treated water volumes produced) are much lower than those for GAC and IX processes. Membrane fouling can be slowed or avoided depending on operating conditions, membrane modifications, and feed modifications<ref name="LeRoux2005">Le Roux, I., Krieg, H.M., Yeates, C.A. and Breytenbach, J.C., 2005. Use of chitosan as an antifouling agent in a membrane bioreactor. Journal of Membrane Science, 248(1-2), pp. 127-136.  [https://doi.org/10.1016/j.memsci.2004.10.005 DOI: 10.1016/j.memsci.2004.10.005]</ref>. Typically, 70-90% of the water supplied into a membrane RO process is recoverable as treated water. The remaining 10-30% is reject containing approximately 4 to 8 times the initial PFAS concentration (depending on recovery rate).
+
More recently it has been discovered that VI impacts can occur via sewer and other subsurface piping connections in areas where vapor migration through the soil would not be expected to be significant, and this could also occur in buildings that do not sit over contaminated groundwater<ref name="RiisEtAl2010" /><ref name="GuoEtAl2015" /><ref name="McHughEtAl2017" /><ref name="McHughBeckley2018" />.  
  
* These cleaning and flushing processes create a continuous liquid waste stream, which periodically includes harsh membrane cleaning chemicals as well as a continuous flow of concentrated membrane reject chemicals (i.e., PFAS) that must be properly managed and disposed of. Management often includes further treatment to remove PFAS from the liquid waste.   
+
Therefore, in addition to groundwater and soil gas sampling, external data collection that includes and extends beyond the area of concern should include manhole vapor sampling (e.g., sanitary sewer, storm sewer, land-drain). Video surveys from sanitary sewers, storm sewers, and/or land-drains can also be used to identify areas of groundwater leakage into utility corridors and lateral connections to buildings that are conduits for vapor transport. During these investigations, it is important to recognize that utility corridors can transmit both impacted water and vapors beyond groundwater plume boundaries, so extending investigations into areas adjacent to groundwater plume boundaries is necessary.   
  
* RO and NF systems are inherently more expensive and complicated systems to implement, operate, and maintain compared to adsorption processes. Treatment system operator certification and process monitoring requirements are correspondingly markedly higher for RO and NF than they are for GAC and IX.  
+
Using projected indoor air concentrations from modeling and empirical data analyses, and distance screening approaches, external source screening can identify areas and buildings that can be ruled out, or conversely, those that warrant building-specific testing.  
  
* Water feed pressures required to drive flow through membrane RO and NF processes are considerably higher than those involved with GAC and IX processes. This results in reduced process efficiency and higher pumping and electrical operating costs.
+
Demonstration of neighborhood-scale external VI source screening using groundwater, depth, sewer, land drain, and video data is documented in the ER-201501 final report<ref name="JohnsonEtAl2020" />.  
  
* Membrane systems can also be subject to issues with irreversible membrane fouling, clogging, and scaling or other physical membrane damage and failures. Additional water pretreatment and higher levels of monitoring and maintenance are then required, further adding to the higher costs of such systems.
+
'''Indoor air source screening''' seeks to locate and remove indoor air sources<ref>Doucette, W.J., Hall, A.J., Gorder, K.A., 2010. Emissions of 1,2-Dichloroethane from Holiday Decorations as a Source of Indoor Air Contamination. Ground Water Monitoring and Remediation, 30(1), pp. 67-73. [https://doi.org/10.1111/j.1745-6592.2009.01267.x doi: 10.1111/j.1745-6592.2009.01267.x] </ref> that might confound building specific VI pathway assessment. Visual inspections and written surveys might or might not identify significant indoor air sources, so these should be complemented with use of portable analytical instruments<ref>McHugh, T., Kuder, T., Fiorenza, S., Gorder, K., Dettenmaier, E., Philp, P., 2011. Application of CSIA to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs. Environmental Science and Technology, 45(14), pp. 5952-5958. [https://doi.org/10.1021/es200988d doi: 10.1021/es200988d]</ref><ref name="BeckleyEtAl2014">Beckley, L., Gorder, K., Dettenmaier, E., Rivera-Duarte, I., McHugh, T., 2014. On-Site Gas Chromatography/Mass Spectrometry (GC/MS) Analysis to Streamline Vapor Intrusion Investigations. Environmental Forensics, 15(3), pp. 234–243. [https://doi.org/10.1080/15275922.2014.930941 doi: 10.1080/15275922.2014.930941]</ref>.
  
===Activated Carbon Adsorption===
+
The advantage of portable analytical tools is that they allow practitioners to expeditiously test indoor air concentrations under natural conditions in each room of the building. Concentrations in any room in excess of relevant screening levels trigger more sampling in that room to identify if an indoor source is present in that room. Removal of a suspected source and subsequent room testing can identify if that object or product was the source of the previously measured concentrations.  
[[File: GAChouse.JPG | thumb| 500px | Figure 2.  Typical private water supply well GAC installation for removal PFAS. Pressure gages and sample ports located before the first (or lead) vessel, at the midpoint, and after the second (or lag) vessel allow monitoring for pressure drop due to fouling and for contaminant breakthrough.]] 
 
Activated carbon is a form of carbon processed to have small pores that increase the surface area available for adsorption of constituents from water. Activated carbon is derived from many source materials, including coconut shells, wood, lignite, and bituminous coal. Different types of activated carbon base materials have varied adsorption characteristics such that some may be better suited to removing certain contaminant compounds than others.  Results from laboratory testing, pilot evaluations, and full-scale system operations suggest that bituminous coal-based GAC is generally the best performing carbon for PFAS removal<ref name="McNamara2018">McNamara, J.D., Franco, R., Mimna, R., and Zappa, L., 2018. Comparison of Activated Carbons for Removal of Perfluorinated Compounds from Drinking Water. Journal‐American Water Works Association, 110(1), pp. E2-E14.  [https://doi.org/10.5942/jawwa.2018.110.0003 DOI: 10.5942/jawwa.2018.110.0003]</ref><ref name="Westreich2018">Westreich, P., Mimna, R., Brewer, J., and Forrester, F., 2018. The removal of short‐chain and long‐chain perfluoroalkyl acids and sulfonates via granular activated carbons: A comparative column study. Remediation Journal, 29(1), pp. 19-26.  [https://doi.org/10.1002/rem.21579 DOI: 10.1002/rem.21579]</ref>.
 
  
The removal efficiency of individual PFAS compounds using GAC is a function of both the PFAS functional group (carboxylic acid versus sulfonic acid) and also the perfluoro-carbon chain length<ref name="McCleaf2017">McCleaf, P., Englund, S., Östlund, A., Lindegren, K., Wiberg, K., and Ahrens, L., 2017. Removal efficiency of multiple poly-and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Research, 120, pp. 77-87. [https://doi.org/10.1016/j.watres.2017.04.057 DOI: 10.1016/j.watres.2017.04.057]</ref><ref name="Eschauzier2012">Eschauzier, C., Beerendonk, E., Scholte-Veenendaal, P., and De Voogt, P., 2012. Impact of Treatment Processes on the Removal of Perfluoroalkyl Acids from the Drinking Water Production Chain. Environmental Science and Technology, 46(3), pp. 1708-1715.  [https://doi.org/10.1021/es201662b DOI: 10.1021/es201662b]</ref>(see [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | PFAS]] for nomenclature):
+
'''Building-specific controlled pressurization method (CPM) testing''' directly measures the worst case indoor air impact, but it can also be used to determine contributing VI pathways and to identify indoor air sources<ref>McHugh, T.E., Beckley, L., Bailey, D., Gorder, K., Dettenmaier, E., Rivera-Duarte, I., Brock, S., MacGregor, I.C., 2012. Evaluation of Vapor Intrusion Using Controlled Building Pressure. Environmental Science and Technology, 46(9), pp. 4792–4799. [https://doi.org/10.1021/es204483g doi: 10.1021/es204483g]</ref><ref name="BeckleyEtAl2014" /><ref name="GuoEtAl2015" /><ref name="HoltonEtAl2015">Holton, C., Guo, Y., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P.C., 2015. Long-Term Evaluation of the Controlled Pressure Method for Assessment of the Vapor Intrusion Pathway. Environmental Science and Technology, 49(4), pp. 2091–2098.  [https://doi.org/10.1021/es5052342 doi: 10.1021/es5052342]</ref><ref name="JohnsonEtAl2020" /><ref name="GuoEtAl2020a">Guo, Y., Dahlen, P., Johnson, P.C., 2020a. Development and Validation of a Controlled Pressure Method Test Protocol for Vapor Intrusion Pathway Assessment. Environmental Science and Technology, 54(12), pp. 7117-7125. [https://dx.doi.org/10.1021/acs.est.0c00811 doi: 10.1021/acs.est.0c00811]</ref>. In CPM testing, blowers/fans installed in a doorway(s) or window(s) are set-up to exhaust indoor air to outdoor, which causes the building to be under pressurized relative to the atmosphere. This induces air movement from the subsurface into the test building via openings in the foundation and/or subsurface piping networks with or without direct connections to indoor air. This is similar to what happens intermittently under natural conditions when wind, indoor-outdoor temperature differences, and/or use of appliances that exhaust air from the structure (e.g. dryer exhaust) create an under-pressurized building condition.  
* perfluoro-sulfonate acids (PFSAs) are more efficiently removed than perfluoro-carboxylic acids (PFCAs) of the same chain length
 
* long chain compounds of the same functional group are removed better than the shorter chains
 
Activated carbon may be applied in drinking water systems as GAC or PAC<ref name="Dudley">Dudley, L.A., Arevalo, E.C., and Knappe, D.R., 2015. Removal of Perfluoroalkyl Substances by PAC Adsorption and Anion Exchange. Water Research Foundation Project #4344.  Free  download of Executive Summary from: [https://www.waterrf.org/system/files/resource/2019-04/4344_ProjectSummary.pdf Water Research Foundation (Public Plus account)]</ref><ref name="Qian2017">Qian, J., Shen, M., Wang, P., Wang, C., Li, K., Liu, J., Lu, B. and Tian, X., 2017. Perfluorooctane sulfonate adsorption on powder activated carbon: Effect of phosphate (P) competition, pH, and temperature. Chemosphere, 182, pp. 215-222. [https://doi.org/10.1016/j.chemosphere.2017.05.033 DOI: 10.1016/j.chemosphere.2017.05.033]</ref>. GAC has larger granules and is reusable, while PAC has much smaller granules and is not typically reused.  PAC has most often been used as a temporary treatment because costs associated with disposal and replacement of the used PAC tend to preclude using it for long-term treatment. A typical GAC installation for a private drinking water well is shown in Figure 2. Contrary to PAC, GAC used to treat PFAS can be reactivated by the manufacturer, driving the PFAS from the GAC and into off-gas. The extracted gas is then treated with thermal oxidation (temperatures often 1200&deg;C to 1400&deg;C). The reactivated GAC is then brought back to the site and reused. Thus, GAC can ultimately be a destructive treatment technology.  
 
  
[[File: IXcycle.png | thumb | 400px | left | Figure 3. Operational cycle of a packed bed reactor with anion exchange resin beads]]
+
The blowers/fans can also be used to blow outdoor air into the building, thereby creating a building over-pressurization condition. A positive pressure difference CPM test suppresses VI pathways; therefore, chemicals detected in indoor air above outdoor air concentrations during this condition are attributed to indoor contaminant sources which facilitates the identification of any such indoor air sources.
  
===Anion Exchange===
+
Data collected during CPM testing, when combined with screening level VI modeling, can be used to identify which VI chemical migration pathways are significant contributors to indoor air impacts<ref name="GuoEtAl2015" />. CPM testing guidelines were developed and validated under ESTCP Project ER-201501<ref name="GuoEtAl2020a" /><ref name="JohnsonEtAl2021" />.
Anion exchange has also been demonstrated for the adsorption of PFAS, and published results note higher sorption per pound than GAC<ref name="McCleaf2017"/><ref name=" Senevirathna2010">Senevirathna, S.T.M.L.D., Tanaka, S., Fujii, S., Kunacheva, C., Harada, H., Shivakoti, B.R., and Okamoto, R., 2010. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers. Chemosphere, 80(6), pp. 647-651.  [https://doi.org/10.1016/j.chemosphere.2010.04.053 DOI: 10.1016/j.chemosphere.2010.04.053]&nbsp;&nbsp; Free download from: [https://www.researchgate.net/profile/Chinagarn_Kunacheva/publication/44672056_A_comparative_study_of_adsorption_of_perfluorooctane_sulfonate_PFOS_onto_granular_activated_carbon_ion-exchange_polymers_and_non-ion-exchange_polymers/links/5a3380510f7e9b2a288a2b21/A-comparative-study-of-adsorption-of-perfluorooctane-sulfonate-PFOS-onto-granular-activated-carbon-ion-exchange-polymers-and-non-ion-exchange-polymers.pdf ResearchGate]</ref><ref name="Woodard2017">Woodard, S., Berry, J., and Newman, B., 2017. Ion exchange resin for PFAS removal and pilot test comparison to GAC. Remediation Journal, 27(3), pp. 19-27.  [https://doi.org/10.1002/rem.21515 DOI: 10.1002/rem.21515]</ref>. The higher capacity is believed to be due to combined hydrophobic and ion exchange adsorption mechanisms, whereas GAC mainly relies on hydrophobic attraction. Anion exchange resins can be highly selective, or they can also remove other contaminants based on design requirements and water chemistry. Resins have greater affinity for PFAS subgroup PFSA than for PFCA, and affinity increases with carbon chain length.
 
[[Wikipedia: Ion-exchange resin | Anion exchange resins]] are a viable alternative to GAC for ''ex situ'' treatment of PFAS anions, and several venders sell resins capable of removing PFAS. Resins available for treating PFAS include regenerable resins that can be used multiple times (Figure 3) and single-use resins that must be disposed or destroyed after use<ref name=" Senevirathna2010"/>. Regenerable resins generate a solvent and brine solution, which is distilled to recover the solvent prior to the brine being adsorbed onto a small quantity of GAC or resin for ultimate disposal. This use of one treatment technology (GAC, IX) to support another (RO) is sometimes referred to as a “treatment train” approach. Single-use resins can be more fully exhausted than regenerable resins can and may be a more cost-effective solution for low concentration PFAS contamination, while regenerable resins may be more cost effective for higher concentration contamination.
 
  
==Developing PFAS Treatment Technologies==
+
'''Passive samplers''' can be used to measure long term average indoor air concentrations under natural conditions and during VI mitigation system operation. They will provide more confident assessment of long term average concentrations than an infrequent sequence of short term grab samples. Long term average concentrations can also be determined by long term active sampling (e.g., by slowly pulling air through a thermal desorption (TD) tube). However, passive sampling has the advantage that additional equipment and expertise is not required for sampler deployment and recovery.   
{| class="wikitable" style="float:right; margin-left:10px;"
 
|+ Table 1.  Developmental Technologies
 
|-
 
! Stage
 
! Separation/Transfer
 
! Destructive*
 
|-
 
| Developing
 
|
 
* Biochar<ref name="Guo2017">Guo, W., Huo, S., Feng, J., and Lu, X., 2017. Adsorption of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures. Journal of the Taiwan Institute of Chemical Engineers, 78, pp. 265-271.  [https://doi.org/10.1016/j.jtice.2017.06.013 DOI: 10.1016/j.jtice.2017.06.013]</ref><ref name="Kupryianchyk2016">Kupryianchyk, D., Hale, S.E., Breedveld, G.D., and Cornelissen, G., 2016. Treatment of sites contaminated with perfluorinated compounds using biochar amendment. Chemosphere, 142, pp. 35-40.  [https://doi.org/10.1016/j.chemosphere.2015.04.085 DOI: 10.1016/j.chemosphere.2015.04.085]&nbsp;&nbsp; Free download from: [https://www.researchgate.net/profile/Sarah_Hale3/publication/276067521_Treatment_of_sites_contaminated_with_perfluorinated_compounds_using_biochar_amendment/links/5cdbe03b299bf14d959895d9/Treatment-of-sites-contaminated-with-perfluorinated-compounds-using-biochar-amendment.pdf ResearchGate]</ref><ref name="Inyang2017">Inyang, M., and Dickenson, E.R., 2017. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems. Chemosphere, 184, pp. 168-175.  [https://doi.org/10.1016/j.chemosphere.2017.05.161 DOI: 10.1016/j.chemosphere.2017.05.161]</ref>
 
* Modified Zeolites<ref name="Espana2015">Espana, V.A.A., Mallavarapu, M., and Naidu, R., 2015. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. Environmental Technology and Innovation, 4, pp. 168-181.  [https://doi.org/10.1016/j.eti.2015.06.001 DOI: 10.1016/j.eti.2015.06.001]&nbsp;&nbsp; Free download from: [https://www.researchgate.net/profile/Ravi_Naidu2/publication/341241612_Recent_advances_in_the_analysis_of_per-and_polyfluoroalkyl_substances_PFAS-A_review/links/5eb9e3d892851cd50dab441c/Recent-advances-in-the-analysis-of-per-and-polyfluoroalkyl-substances-PFAS-A-review.pdf ResearchGate]</ref><ref name="CETCO2019">CETCO, 2019. FLUORO-SORB&reg; Adsorbent (product sales brochure).  [https://www.mineralstech.com/docs/default-source/performance-materials-documents/cetco/environmental-products/brochures/ps_fluorosorb_am_en_201905_v1.pdf Free download]&nbsp;&nbsp; [[Media:  FluoroSorb2019.pdf | Fluoro-Sorb.pdf]]</ref>
 
* Specialty adsorbents<ref name="Zhang2011">Zhang, Q., Deng, S., Yu, G., and Huang, J., 2011. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. Bioresource Technology, 102(3), pp. 2265-2271.  [https://doi.org/10.1016/j.biortech.2010.10.040 DOI: 10.1016/j.biortech.2010.10.040]</ref><ref name="Cao2016">Cao, F., Wang, L., Ren, X., and Sun, H., 2016. Synthesis of a perfluorooctanoic acid molecularly imprinted polymer for the selective removal of perfluorooctanoic acid in an aqueous environment. Journal of Applied Polymer Science, 133(15).  [https://doi.org/10.1002/app.43192 DOI: 10.1002/app.43192]</ref><ref name="Hu2016">Hu, L., Li, Y., and Zhang, W., 2016. Characterization and application of surface-molecular-imprinted-polymer modified TiO2 nanotubes for removal of perfluorinated chemicals. Water Science and Technology, 74(6), pp. 1417-1425.  [https://doi.org/10.2166/wst.2016.321 DOI: 10.2166/wst.2016.321]&nbsp;&nbsp; [[Media: Hu2016.pdf | Free access article.]]</ref>
 
|
 
* Electro-oxidation<ref name="Zhang2016">Zhang, C., Tang, J., Peng, C., and Jin, M., 2016. Degradation of perfluorinated compounds in wastewater treatment plant effluents by electrochemical oxidation with Nano-ZnO coated electrodes. Journal of Molecular Liquids, 221, pp. 1145-1150.  [https://doi.org/10.1016/j.molliq.2016.06.093 DOI: 10.1016/j.molliq.2016.06.093]</ref><ref name="Urtiaga2015">Urtiaga, A., Fernández-González, C., Gómez-Lavín, S., and Ortiz, I., 2015. Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes. Chemosphere, 129, pp. 20-26.  [https://doi.org/10.1016/j.chemosphere.2014.05.090 DOI: 10.1016/j.chemosphere.2014.05.090]&nbsp;&nbsp; Free download from: [https://d1wqtxts1xzle7.cloudfront.net/39233145/00b7d53b67db54fca5000000.pdf?1445006282=&response-content-disposition=inline%3B+filename%3DKinetics_of_the_electrochemical_minerali.pdf&Expires=1613074964&Signature=Bfvds3n9udSs5F9J00Embf8MRJxumQVJoaj5jEni5mqPnmo2QFGGN3fUvWISkRD1yKfoIhNEDQ0a-ISxfZ9vW9jBTkTjN7ud7aSC3rBelIFdtFasfpEXgPvnqsLfKRTWI5S~QRsHbvK5XbwnKo2VyFAmUcuJUjVFP1PK1kEY9-gB2d-8FwSJWbCAAd83fNWm3zHzbOvdchJ~fjAqlydgq7Pu~AwEeH4Zl1LhcYxajzcenTSiBWmMStfOUpTyETSCpSwF7XKuhKMYGePsit8fAWpxH4dleYWmvOi9Gc9YyTB32qBziOTfeqjhTsA-uqECz9bxyD65voHUW7sEchkrKw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA Academia.edu]</ref><ref name="Schaefer2018">Schaefer, C.E., Choyke, S., Ferguson, P.L., Andaya, C., Burant, A., Maizel, A., Strathmann, T.J. and Higgins, C.P., 2018. Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Groundwater Impacted with Aqueous Film Forming Foams. Environmental Science and Technology, 52(18), pp. 10689-10697.  [https://doi.org/10.1021/acs.est.8b02726 DOI: 10.1021/acs.est.8b02726]</ref>
 
* Heat activated persulfate<ref name="Park2016">Park, S., Lee, L.S., Medina, V. F., Zull, A., and Waisner, S., 2016. Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere, 145, pp. 376-383.  [https://doi.org/10.1016/j.chemosphere.2015.11.097 DOI: 10.1016/j.chemosphere.2015.11.097]</ref>
 
* Alkaline perozone<ref name="Lin2012">Lin, A.Y.C., Panchangam, S.C., Chang, C.Y., Hong, P.A., and Hsueh, H.F., 2012. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition. Journal of Hazardous Materials, 243, pp. 272-277.  [https://doi.org/10.1016/j.jhazmat.2012.10.029 DOI: 10.1016/j.jhazmat.2012.10.029]</ref>
 
* Sonolysis<ref name="Campbell2015">Campbell, T., Hoffmann, M.R., 2015. Sonochemical degradation of perfluorinated surfactants: Power and multiple frequency effects. Separation and Purification Technology, 156(3), pp. 1019-1027.  [https://doi.org/10.1016/j.seppur.2015.09.053 DOI: 10.1016/j.seppur.2015.09.053]&nbsp;&nbsp; Free download from: [https://www.researchgate.net/profile/Tammy_Campbell5/publication/282583363_Sonochemical_Degradation_of_Perfluorinated_Surfactants_Power_and_Multiple_Frequency_Effects/links/5bfc40bd92851cbcdd74449b/Sonochemical-Degradation-of-Perfluorinated-Surfactants-Power-and-Multiple-Frequency-Effects.pdf ResearchGate]</ref><ref name="Cheng2010">Cheng, J., Vecitis, C.D., Park, H., Mader, B.T., Hoffmann, M.R., 2010. Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Groundwater: Kinetic Effects of Matrix Inorganics. Environmental Science and Technology, 44(1), pp. 445-450.  [https://doi.org/10.1021/es902651g DOI: 10.1021/es902651g]</ref><ref name="Gole2018a">Gole, V.L., Sierra-Alvarez, R., Peng, H., Giesy, J.P., Deymier, P., Keswani, M., 2018. Sono-chemical treatment of per- and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor. Ultrasonics Sonochemistry, 45, pp. 213-222.  [https://doi.org/10.1016/j.ultsonch.2018.02.014 DOI: 10.1016/j.ultsonch.2018.02.014]&nbsp;&nbsp; [https://www.sciencedirect.com/science/article/pii/S1350417718301937 Open access article.]&nbsp;&nbsp; [[Media: Gole2018a.pdf | Report.pdf]]</ref><ref name="Gole2018b">Gole, V.L., Fishgold, A., Sierra-Alvarez, R., Deymier, P., Keswani, M., 2018. Treatment of perfluorooctane sulfonic acid (PFOS) using a large-scale sonochemical reactor. Separation and Purification Technology, 194, pp. 104-110.  [https://doi.org/10.1016/j.seppur.2017.11.009 DOI: 10.1016/j.seppur.2017.11.009]</ref>
 
* Super Critical Water Oxidation
 
|-
 
| Maturing and</br>Demonstrated
 
|
 
* Chemical coagulation<ref name="Cornelsen2015">Cornelsen Ltd., 2015. PerfluorAd, PFC Water Treatment Solution (product sales site). [http://www.cornelsen.co.uk/perfluorad-pfc-treatment/ Website]</ref>
 
* Electrocoagulation<ref name="Wang2016">Wang, Y., Lin, H., Jin, F., Niu, J., Zhao, J., Bi, Y., and Li, Y., 2016. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. Science of the Total Environment, 557, pp. 542-550.  [https://doi.org/10.1016/j.scitotenv.2016.03.114 DOI: 10.1016/j.scitotenv.2016.03.114]</ref>
 
* Foam fractionation<ref name="Horst2018">Horst, J., McDonough, J., Ross, I., Dickson, M., Miles, J., Hurst, J., and Storch, P., 2018. Water Treatment Technologies for PFAS: The Next Generation. Groundwater Monitoring and Remediation, 38(2), pp. 13-23.  [https://doi.org/10.1111/gwmr.12281 DOI: 10.1111/gwmr.12281]</ref><ref name="EPC2017">EPC Media Group Pty Ltd., 2017. OPEC systems delivers PFAS contamination breakthrough. Waste + Water Management Australia, 44(3), 26-27[https://search.informit.org/doi/10.3316/informit.253699294687114 DOI: 10.3316/informit.253699294687114]  ISSN: 1838-7098</ref>
 
|
 
* Low temperature plasma<ref name="Stratton2017">Stratton, G.R., Dai, F., Bellona, C.L., Holsen, T.M., Dickenson, E.R., and Mededovic Thagard, S., 2017. Plasma-Based Water Treatment: Efficient Transformation of Perfluoroalkyl Substances in Prepared Solutions and Contaminated Groundwater. Environmental Science and Technology, 51(3), pp. 1643-1648.  [https://doi.org/10.1021/acs.est.6b04215 DOI: 10.1021/acs.est.6b04215]</ref><ref name="Singh2019">Singh, R.K., Multari, N., Nau-Hix, C., Anderson, R.H., Richardson, S.D., Holsen, T.M. and Mededovic Thagard, S., 2019. Rapid Removal of Poly- and Perfluorinated Compounds from Investigation-Derived Waste (IDW) in a Pilot-Scale Plasma Reactor. Environmental Science and Technology, 53(19), pp. 11375-11382.  [https://doi.org/10.1021/acs.est.9b02964 DOI: 10.1021/acs.est.9b02964]</ref>
 
|-
 
| colspan="3" style="background:white;" | * There are several other destructive technologies such as alternative oxidants, and activation</br>methods of oxidants, but for the purpose of this article, the main categories are presented here.
 
|}
 
Numerous&nbsp;separation&nbsp;and destructive technologies are in the developmental stages of bench-scale testing or limited field-scale demonstrations.  Some of these are listed in Table&nbsp;1:
 
  
==Conclusions==
+
Use of passive samplers in indoor air under time-varying concentration conditions was demonstrated and validated by comparing against intensive active sampling in ESTCP Project ER-201501<ref name="JohnsonEtAl2020" /><ref name="GuoEtAl2021">Guo, Y., O’Neill, H., Dahlen, P., and Johnson, P.C2021Evaluation of Passive Diffusive-Adsorptive Samplers for Use in Assessing Time-Varying Indoor Air Impacts Resulting from Vapor IntrusionGroundwater Monitoring and Remediation, 42(1), pp. 38-49. [https://doi.org/10.1111/gwmr.12481 doi: 10.1111/12481]</ref>.  
The well established processes for removing PFAS from water all produce residuals that require management, and it is likely that newer processes under development will also produce some residuals. Often, it is the residuals that limit the usefulness of the process. For instance, RO and NF may currently provide the most complete treatment of water, but the production of a relatively high volume of PFAS-containing liquid reject (the portion of the liquid that retains the contaminants and is “rejected” from the process) limits their applicationOften, a second treatment technology such as an adsorbent is required to support the main technology by concentrating or treating the residuals.   
 
As more testing and operational data on adsorbents are generated, it is becoming evident that no adsorbent technology outperforms the others in all casesWhether GAC, ion exchange or another technology is the most technically efficient and cost effective long term option for a given site depends on influent water geochemistry and contaminant concentrations, treatment standards, co-contaminants, duration of treatment, and required flow rates. New generation adsorbents are rapidly being introduced into the market at “evaluation scale” which may provide advantages over commercially available adsorbents.  
 
Several newer technologies are being evaluated in the lab and in the field which include electro-oxidation, heat-activated persulfate, sonolysis, electrocoagulation, low temperature plasma, super critical water oxidation, and foam fractionation. These and other potential treatments for PFAS are still largely in the developmental stage. Several technologies show promise for improved management of PFAS sites. However, it is unlikely that a single technology will be adequate for full remediation at many sites. A multi-technology treatment train approach may be necessary for effective treatment of this complicated group of compounds.
 
  
<br clear="left" />
+
The purpose of maintaining an evergreen '''comprehensive VI conceptual model''' is to ensure that the most complete and up-to-date understanding of the site is informing decisions related to future sampling, data interpretation, and the need for and design of mitigation systems. The VI conceptual model can also serve as an effective communication tool in stakeholder discussions.
 +
 
 +
Use of these tools for residential neighborhoods and in non-residential buildings overlying chlorinated solvent groundwater plumes is documented comprehensively in a series of peer reviewed articles<ref name="JohnsonEtAl2020" /><ref name="JohnsonEtAl2021" /><ref name="JohnsonEtAl2022" /><ref name="GuoEtAl2015" /><ref name="GuoEtAl2020a" /><ref name="GuoEtAl2020b">Guo, Y., Dahlen, P., Johnson, P.C. 2020b. Temporal variability of chlorinated volatile organic compound vapor concentrations in a residential sewer and land drain system overlying a dilute groundwater plume. Science of the Total Environment, 702, Article 134756.  [https://doi.org/10.1016/j.scitotenv.2019.134756 doi: 10.1016/j.scitotenv.2019.134756]&nbsp;&nbsp; [//www.enviro.wiki/images/e/e5/GuoEtAl2020b.pdf  Open Access Manuscript]</ref><ref name="GuoEtAl2021" /><ref name="HoltonEtAl2015" />.
 +
 
 +
==Summary==
 +
In summary, the VI Diagnosis Toolkit provides a set of tools that can lead to quicker, more confident, and more cost effective neighborhood-scale VI pathway and impact assessments. Toolkit components and their use can complement conventional methods for assessing and mitigating the vapor intrusion pathway.
  
 
==References==
 
==References==
 
 
<references />
 
<references />
  
 
==See Also==
 
==See Also==
 +
 +
*[https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4000681 Evaluation of Radon and Building Pressure Differences as Environmental Indicators for Vapor Intrusion Assessment]
 +
*[https://pubs.acs.org/doi/10.1021/es4024767 Temporal Variability of Indoor Air Concentrations under Natural Conditions in a House Overlying a Dilute Chlorinated Solvent Groundwater Plume]
 +
*[https://serdp-estcp.mil/projects/details/e0d00662-c333-4560-8ae7-60f20b0e714b Integrated Field-Scale, Lab-Scale, and Modeling Studies for Improving Our Ability to Assess the Groundwater to Indoor Air Pathway at Chlorinated Solvent Impacted Sites]

Latest revision as of 21:57, 22 July 2024

Munitions Constituents – Sample Extraction and Analytical Techniques

Munitions Constituents, including insensitive munitions IM), are a broad category of compounds and, in areas where manufactured or used, can be found in a variety of environmental matrices (waters, soil, and tissues). This presents an analytical challenge when a variety of these munitions are to be quantified. This article discusses sample extraction methods for each typical sample matrix (high level water, low level water, soil and tissue) as well as the accompanying HPLC-UV analytical method for 27 compounds of interest (legacy munitions, insensitive munitions, and surrogates).

Related Article(s):

Contributor(s):

  • Dr. Austin Scircle

Key Resource(s):

  • Methods for simultaneous quantification of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices[2]

Introduction

The primary intention of the analytical methods presented here is to support the monitoring of legacy and insensitive munitions contamination on test and training ranges, however legacy and insensitive munitions often accompany each other at demilitarization facilities, manufacturing facilities, and other environmental sites. Energetic materials typically appear on ranges as small, solid particulates and due to their varying functional groups and polarities, can partition in various environmental compartments[3]. To ensure that contaminants are monitored and controlled at these sites and to sustainably manage them a variety of sample matrices (surface or groundwater, process waters, soil, and tissues) must be considered. (Process water refers to water used during industrial manufacturing or processing of legacy and insensitive munitions.) Furthermore, additional analytes must be added to existing methodologies as the usage of IM compounds changes and as new degradation compounds are identified. Of note, relatively new IM formulations containing NTO, DNAN, and NQ are seeing use in IMX-101, IMX-104, Pax-21 and Pax-41 (Table 1)[4][5].

Sampling procedures for legacy and insensitive munitions are identical and utilize multi-increment sampling procedures found in USEPA Method 8330B Appendix A[1]. Sample hold times, subsampling and quality control requirements are also unchanged. The key differences lie in the extraction methods and instrumental methods. Briefly, legacy munitions analysis of low concentration waters uses a single cartridge reverse phase SPE procedure, and acetonitrile (ACN) is used for both extraction and elution for aqueous and solid samples[1][6]. An isocratic separation via reversed-phase C-18 column with 50:50 methanol:water mobile phase or a C-8 column with 15:85 isopropanol:water mobile phase is used to separate legacy munitions[1]. While these procedures are sufficient for analysis of legacy munitions, alternative solvents, additional SPE cartridges, and a gradient elution are all required for the combined analysis of legacy and insensitive munitions.

Previously, analysis of legacy and insensitive munitions required multiple analytical techniques, however the methods presented here combine the two munitions categories resulting in an HPLC-UV method and accompanying extraction methods for a variety of common sample matrices. A secondary HPLC-UV method and a HPLC-MS method were also developed as confirmatory methods. The methods discussed in this article were validated extensively by single-blind round robin testing and subsequent statistical treatment as part of ESTCP ER19-5078. Wherever possible, the quality control criteria in the Department of Defense Quality Systems Manual for Environmental Laboratories were adhered to[7]. Analytes included in these methods are found in Table 1.

The chromatograms produced by the primary and secondary HPLC-UV methods are shown in Figure 1 and Figure 2, respectively. Chromatograms for each detector wavelength used are shown (315, 254, and 210 nm).

Extraction Methods

High Concentration Waters (> 1 ppm)

Aqueous samples suspected to contain the compounds of interest at concentrations detectable without any extraction or pre-concentration are suitable for analysis by direct injection. The method deviates from USEPA Method 8330B by adding a pH adjustment and use of MeOH rather than ACN for dilution[1]. The pH adjustment is needed to ensure method accuracy for ionic compounds (like NTO or PA) in basic samples. A solution of 1% HCl/MeOH is added to both acidify and dilute the samples to a final acid concentration of 0.5% (vol/vol) and a final solvent ratio of 1:1 MeOH/H2O. The direct injection samples are then ready for analysis.

Low Concentration Waters (< 1 ppm)

Aqueous samples suspected to contain the compounds of interest at low concentrations require extraction and pre-concentration using solid phase extraction (SPE). The SPE setup described here uses a triple cartridge setup shown in Figure 3. Briefly, the extraction procedure loads analytes of interest onto the cartridges in this order: StrataTM X, StrataTM X-A, and Envi-CarbTM. Then the cartridge order is reversed, and analytes are eluted via a two-step elution, resulting in 2 extracts (which are combined prior to analysis). Five milliliters of MeOH is used for the first elution, while 5 mL of acidified MeOH (2% HCl) is used for the second elution. The particular SPE cartridges used are noncritical so long as cartridge chemistries are comparable to those above.

Soils

Soil collection, storage, drying and grinding procedures are identical to the USEPA Method 8330B procedures[1]; however, the solvent extraction procedure differs in the number of sonication steps, sample mass and solvent used. A flow chart of the soil extraction procedure is shown in Figure 4. Soil masses of approximately 2 g and a sample to solvent ratio of 1:5 (g/mL) are used for soil extraction. The extraction is carried out in a sonication bath chilled below 20 ⁰C and is a two-part extraction, first extracting in MeOH (6 hours) followed by a second sonication in 1:1 MeOH:H2O solution (14 hours). The extracts are centrifuged, and the supernatant is filtered through a 0.45 μm PTFE disk filter.

The solvent volume should generally be 10 mL but if different soil masses are required, solvent volume should be 5 mL/g. The extraction results in 2 separate extracts (MeOH and MeOH:H2O) that are combined prior to analysis.

Tissues

Tissue matrices are extracted by 18-hour sonication using a ratio of 1 gram of wet tissue per 5 mL of MeOH. This extraction is performed in a sonication bath chilled below 20 ⁰C and the supernatant (MeOH) is filtered through a 0.45 μm PTFE disk filter.

Due to the complexity of tissue matrices, an additional tissue cleanup step, adapted from prior research, can be used to reduce interferences[8][2]. The cleanup procedure uses small scale chromatography columns prepared by loading 5 ¾” borosilicate pipettes with 0.2 g activated silica gel (100–200 mesh). The columns are wetted with 1 mL MeOH, which is allowed to fully elute and then discarded prior to loading with 1 mL of extract and collecting in a new amber vial. After the extract is loaded, a 1 mL aliquot of MeOH followed by a 1 mL aliquot of 2% HCL/MeOH is added. This results in a 3 mL silica treated tissue extract. This extract is vortexed and diluted to a final solvent ratio of 1:1 MeOH/H2O before analysis.



Most federal, state, and local regulatory guidance for assessing and mitigating the vapor intrusion pathway reflects USEPA’s Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air[9]. The paradigm outlined by that guidance includes: 1) a preliminary and mostly qualitative analysis that looks for site conditions that suggest vapor intrusion might occur (e.g., the presence of vapor-forming chemicals in close proximity to buildings); 2) a multi-step and more detailed quantitative screening analysis that involves site-specific data collection and their comparison to screening levels to identify buildings of potential VI concern; and 3) selection and design of mitigation systems or continued monitoring, as needed. With respect to (2), regulatory guidance typically recommends consideration of “multiple lines of evidence” in decision-making[9][10], with typical lines-of-evidence being groundwater, soil gas, sub-slab soil gas, and/or indoor air concentrations. Of those, soil gas measurements and/or measured short-term indoor air concentrations can be weighted heavily, and therefore decision making might not be completed without them. Effective evaluation of VI risk from sub-slab and/or soil gas measurements would require an unknown building-specific attenuation factor, but there is also uncertainty as to whether or not indoor air data is representative of maximum and/or long-term average indoor concentrations. Indoor air data can be confounded by indoor contaminant sources because the number of samples is typically small, indoor concentrations can vary with time, and because a number of household products can emit the chemicals being measured. When conducting VI pathway assessments in neighborhoods where it is impractical to assess all buildings, the EPA recommends following a “worst first” investigational approach.

The limitations of this approach, as practiced, are the following:

  • Decisions are rarely made without indoor air data and generally, seasonal sampling is required, delaying decision making.
  • The collection of a robust indoor air data set that adequately characterizes long term indoor air concentrations could take years given the typical frequency of data collection and the most common methods of sample collection (e.g., 24-hour samples). Therefore, indoor air sampling might continue indefinitely at some sites.
  • The “worst first” buildings might not be identified correctly by the logic outlined in USEPA’s 2015 guidance and the most impacted buildings might not even be located over a groundwater plume. Recent studies have shown VI impacts in homes as a result of sewer and other subsurface piping connections, which are not explicitly considered nor easily characterized through conventional VI pathway assessment[11][12][13][14][15].
  • The presumptive remedy for VI mitigation (sub-slab depressurization) may not be effective for all VI scenarios (e.g., those involving vapor migration to indoor spaces via sewer connections).

The VI Diagnosis Toolkit components were developed considering these limitations as well as more recent knowledge gained through research, development, and validation projects funded by SERDP and ESTCP.

The VI Diagnosis Toolkit Components

Figure 1. Vapor intrusion pathway conceptualization considering “alternate VI pathways”, including “pipe flow VI” and “sewer VI” pathways[16].

The primary components of the VI Diagnosis Toolkit and their uses include:

  • External VI source strength screening to identify buildings most likely to be impacted by VI at levels warranting building-specific testing.
  • Indoor air source screening to locate and remove indoor air sources that might confound building specific VI pathway assessment.
  • Controlled pressurization method (CPM) testing to quickly (in a few days or less) measure the worst-case indoor air impact likely to be caused by VI under natural conditions in specific buildings. CPM tests can also be used to identify the presence of indoor air sources and diagnose active VI pathways.
  • Passive indoor sampling for determining long-term average indoor air concentrations under natural VI conditions and/or for verifying mitigation system effectiveness in buildings that warrant VI mitigation.
  • Comprehensive VI conceptual model development and refinement to ensure that appropriate monitoring, investigation, and mitigation strategies are being selected (Figure 1).

Expanded discussions for each of these are given below.

External VI source strength screening identifies those buildings that warrant more intrusive building-specific assessments, using data collected exterior to the buildings. The use of groundwater and/or soil gas concentration data for building screening has been part of VI pathway assessments for some time and their use is discussed in many regulatory guidance documents. Typically, the measured concentrations are compared to relevant screening levels derived via modeling or empirical analyses from indoor air concentrations of concern.

More recently it has been discovered that VI impacts can occur via sewer and other subsurface piping connections in areas where vapor migration through the soil would not be expected to be significant, and this could also occur in buildings that do not sit over contaminated groundwater[15][12][13][14].

Therefore, in addition to groundwater and soil gas sampling, external data collection that includes and extends beyond the area of concern should include manhole vapor sampling (e.g., sanitary sewer, storm sewer, land-drain). Video surveys from sanitary sewers, storm sewers, and/or land-drains can also be used to identify areas of groundwater leakage into utility corridors and lateral connections to buildings that are conduits for vapor transport. During these investigations, it is important to recognize that utility corridors can transmit both impacted water and vapors beyond groundwater plume boundaries, so extending investigations into areas adjacent to groundwater plume boundaries is necessary.

Using projected indoor air concentrations from modeling and empirical data analyses, and distance screening approaches, external source screening can identify areas and buildings that can be ruled out, or conversely, those that warrant building-specific testing.

Demonstration of neighborhood-scale external VI source screening using groundwater, depth, sewer, land drain, and video data is documented in the ER-201501 final report[16].

Indoor air source screening seeks to locate and remove indoor air sources[17] that might confound building specific VI pathway assessment. Visual inspections and written surveys might or might not identify significant indoor air sources, so these should be complemented with use of portable analytical instruments[18][19].

The advantage of portable analytical tools is that they allow practitioners to expeditiously test indoor air concentrations under natural conditions in each room of the building. Concentrations in any room in excess of relevant screening levels trigger more sampling in that room to identify if an indoor source is present in that room. Removal of a suspected source and subsequent room testing can identify if that object or product was the source of the previously measured concentrations.

Building-specific controlled pressurization method (CPM) testing directly measures the worst case indoor air impact, but it can also be used to determine contributing VI pathways and to identify indoor air sources[20][19][12][21][16][22]. In CPM testing, blowers/fans installed in a doorway(s) or window(s) are set-up to exhaust indoor air to outdoor, which causes the building to be under pressurized relative to the atmosphere. This induces air movement from the subsurface into the test building via openings in the foundation and/or subsurface piping networks with or without direct connections to indoor air. This is similar to what happens intermittently under natural conditions when wind, indoor-outdoor temperature differences, and/or use of appliances that exhaust air from the structure (e.g. dryer exhaust) create an under-pressurized building condition.

The blowers/fans can also be used to blow outdoor air into the building, thereby creating a building over-pressurization condition. A positive pressure difference CPM test suppresses VI pathways; therefore, chemicals detected in indoor air above outdoor air concentrations during this condition are attributed to indoor contaminant sources which facilitates the identification of any such indoor air sources.

Data collected during CPM testing, when combined with screening level VI modeling, can be used to identify which VI chemical migration pathways are significant contributors to indoor air impacts[12]. CPM testing guidelines were developed and validated under ESTCP Project ER-201501[22][23].

Passive samplers can be used to measure long term average indoor air concentrations under natural conditions and during VI mitigation system operation. They will provide more confident assessment of long term average concentrations than an infrequent sequence of short term grab samples. Long term average concentrations can also be determined by long term active sampling (e.g., by slowly pulling air through a thermal desorption (TD) tube). However, passive sampling has the advantage that additional equipment and expertise is not required for sampler deployment and recovery.

Use of passive samplers in indoor air under time-varying concentration conditions was demonstrated and validated by comparing against intensive active sampling in ESTCP Project ER-201501[16][24].

The purpose of maintaining an evergreen comprehensive VI conceptual model is to ensure that the most complete and up-to-date understanding of the site is informing decisions related to future sampling, data interpretation, and the need for and design of mitigation systems. The VI conceptual model can also serve as an effective communication tool in stakeholder discussions.

Use of these tools for residential neighborhoods and in non-residential buildings overlying chlorinated solvent groundwater plumes is documented comprehensively in a series of peer reviewed articles[16][23][25][12][22][26][24][21].

Summary

In summary, the VI Diagnosis Toolkit provides a set of tools that can lead to quicker, more confident, and more cost effective neighborhood-scale VI pathway and impact assessments. Toolkit components and their use can complement conventional methods for assessing and mitigating the vapor intrusion pathway.

References

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 United States Environmental Protection Agency (USEPA), 2006. EPA Method 8330B (SW-846) Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Revision 2. USEPA Website    Method 8330B.pdf
  2. ^ 2.0 2.1 Crouch, R.A., Smith, J.C., Stromer, B.S., Hubley, C.T., Beal, S., Lotufo, G.R., Butler, A.D., Wynter, M.T., Russell, A.L., Coleman, J.G., Wayne, K.M., Clausen, J.L., Bednar, A.J., 2020. Methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil/sediment, and tissue matrices. Talanta, 217, Article 121008. doi: 10.1016/j.talanta.2020.121008    Open Access Manuscript.pdf
  3. ^ Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp. 932-941. doi: 10.1002/prep.201700089
  4. ^ Mainiero, C. 2015. Picatinny Employees Recognized for Insensitive Munitions. U.S. Army, Picatinny Arsenal Public Affairs. Open Access Press Release
  5. ^ Frem, D., 2022. A Review on IMX-101 and IMX-104 Melt-Cast Explosives: Insensitive Formulations for the Next-Generation Munition Systems. Propellants, Explosives, Pyrotechnics, 48(1), e202100312. doi: 10.1002/prep.202100312
  6. ^ United States Environmental Protection Agency (USEPA), 2007. EPA Method 3535A (SW-846) Solid-Phase Extraction (SPE), Revision 1. USEPA Website    Method 3535A.pdf
  7. ^ US Department of Defense and US Department of Energy, 2021. Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.4. 387 pages. Free Download    QSM Version 5.4.pdf
  8. ^ Russell, A.L., Seiter, J.M., Coleman, J.G., Winstead, B., Bednar, A.J., 2014. Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS. Talanta, 128, pp. 524–530. doi: 10.1016/j.talanta.2014.02.013
  9. ^ 9.0 9.1 USEPA, 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER Publication No. 9200.2-154, 267 pages. USEPA Website   Report.pdf
  10. ^ NJDEP, 2021. Vapor Intrusion Technical Guidance, Version 5.0. New Jersey Department of Environmental Protection, Trenton, NJ. Website   Guidance Document.pdf
  11. ^ Beckley, L, McHugh, T., 2020. A Conceptual Model for Vapor Intrusion from Groundwater Through Sewer Lines. Science of the Total Environment, 698, Article 134283. doi: 10.1016/j.scitotenv.2019.134283   Open Access Article
  12. ^ 12.0 12.1 12.2 12.3 12.4 Guo, Y., Holton, C., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P.C., 2015. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations. Environmental Science and Technology, 49(22), pp. 13472–13482. doi: 10.1021/acs.est.5b03564
  13. ^ 13.0 13.1 McHugh, T., Beckley, L., Sullivan, T., Lutes, C., Truesdale, R., Uppencamp, R., Cosky, B., Zimmerman, J., Schumacher, B., 2017. Evidence of a Sewer Vapor Transport Pathway at the USEPA Vapor Intrusion Research Duplex. Science of the Total Environment, pp. 598, 772-779. doi: 10.1016/j.scitotenv.2017.04.135   Open Access Manuscipt
  14. ^ 14.0 14.1 McHugh, T., Beckley, L., 2018. Sewers and Utility Tunnels as Preferential Pathways for Volatile Organic Compound Migration into Buildings: Risk Factors and Investigation Protocol. ESTCP ER-201505, Final Report. Project Website   Final Report.pdf
  15. ^ 15.0 15.1 Riis, C., Hansen, M.H., Nielsen, H.H., Christensen, A.G., Terkelsen, M., 2010. Vapor Intrusion through Sewer Systems: Migration Pathways of Chlorinated Solvents from Groundwater to Indoor Air. Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May, Monterey, CA. Battelle Memorial Institute. ISBN 978-0-9819730-2-9. Website   Report.pdf
  16. ^ 16.0 16.1 16.2 16.3 16.4 Cite error: Invalid <ref> tag; no text was provided for refs named JohnsonEtAl2020
  17. ^ Doucette, W.J., Hall, A.J., Gorder, K.A., 2010. Emissions of 1,2-Dichloroethane from Holiday Decorations as a Source of Indoor Air Contamination. Ground Water Monitoring and Remediation, 30(1), pp. 67-73. doi: 10.1111/j.1745-6592.2009.01267.x
  18. ^ McHugh, T., Kuder, T., Fiorenza, S., Gorder, K., Dettenmaier, E., Philp, P., 2011. Application of CSIA to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs. Environmental Science and Technology, 45(14), pp. 5952-5958. doi: 10.1021/es200988d
  19. ^ 19.0 19.1 Beckley, L., Gorder, K., Dettenmaier, E., Rivera-Duarte, I., McHugh, T., 2014. On-Site Gas Chromatography/Mass Spectrometry (GC/MS) Analysis to Streamline Vapor Intrusion Investigations. Environmental Forensics, 15(3), pp. 234–243. doi: 10.1080/15275922.2014.930941
  20. ^ McHugh, T.E., Beckley, L., Bailey, D., Gorder, K., Dettenmaier, E., Rivera-Duarte, I., Brock, S., MacGregor, I.C., 2012. Evaluation of Vapor Intrusion Using Controlled Building Pressure. Environmental Science and Technology, 46(9), pp. 4792–4799. doi: 10.1021/es204483g
  21. ^ 21.0 21.1 Holton, C., Guo, Y., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P.C., 2015. Long-Term Evaluation of the Controlled Pressure Method for Assessment of the Vapor Intrusion Pathway. Environmental Science and Technology, 49(4), pp. 2091–2098. doi: 10.1021/es5052342
  22. ^ 22.0 22.1 22.2 Guo, Y., Dahlen, P., Johnson, P.C., 2020a. Development and Validation of a Controlled Pressure Method Test Protocol for Vapor Intrusion Pathway Assessment. Environmental Science and Technology, 54(12), pp. 7117-7125. doi: 10.1021/acs.est.0c00811
  23. ^ 23.0 23.1 Cite error: Invalid <ref> tag; no text was provided for refs named JohnsonEtAl2021
  24. ^ 24.0 24.1 Guo, Y., O’Neill, H., Dahlen, P., and Johnson, P.C. 2021. Evaluation of Passive Diffusive-Adsorptive Samplers for Use in Assessing Time-Varying Indoor Air Impacts Resulting from Vapor Intrusion. Groundwater Monitoring and Remediation, 42(1), pp. 38-49. doi: 10.1111/12481
  25. ^ Cite error: Invalid <ref> tag; no text was provided for refs named JohnsonEtAl2022
  26. ^ Guo, Y., Dahlen, P., Johnson, P.C. 2020b. Temporal variability of chlorinated volatile organic compound vapor concentrations in a residential sewer and land drain system overlying a dilute groundwater plume. Science of the Total Environment, 702, Article 134756. doi: 10.1016/j.scitotenv.2019.134756   Open Access Manuscript

See Also