Difference between revisions of "User:Debra Tabron/sandbox"

From Enviro Wiki
Jump to: navigation, search
 
(291 intermediate revisions by the same user not shown)
Line 1: Line 1:
Microbial removal of halogens from organic compounds by reductive processes forms the basis for many types of bioremediation technologies. The process was discovered within the last several decades and our understanding of how microbes perform this activity has improved significantly. Advances in our understanding of the microbiology of reductive dehalogenation have led to improvements in documenting natural attenuation and implementation of biostimulation and bioaugmentation. As a general rule, bioremediation is a lower cost approach to treatment of halogenated solvents than competing processes based on physical or chemical techniques (e.g., chemical oxidation). For practitioners, a working knowledge of microbial reductive processes is essential to successful application at hazardous waste sites.  
+
The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.  
 +
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
+
'''Related Article(s)''':  
  
'''Related Article(s)''':
 
  
 +
'''CONTRIBUTOR(S):'''  [[Dr. Samuel Beal]]
  
'''CONTRIBUTOR(S):''' [[Dr. Gorm Heron]]
 
  
 
'''Key Resource(s)''':  
 
'''Key Resource(s)''':  
*[https://doi.org/10.1002/jctb.1567 Enhanced Anaerobic Bioremediation of Chlorinated Solvents: Environmental Factors Influencing Microbial Activity and Their Relevance under Field Conditions]<ref name= "Aulenta2006">Aulenta, F., Majone, M. and Tandoi, V., 2006. Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81(9), pp.1463-1474. [https://doi.org/10.1002/jctb.1567 doi: 10.1002/jctb.1567]</ref>.
+
*[[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Guidance for Soil Sampling of Energetics and Metals]]<ref name= "Taylor2011">Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). [[media:Taylor-2011 ERDC-CRREL TR-11-15.pdf| Report.pdf]]</ref>
*[https://doi.org/10.1007/978-3-662-49875-0 Organohalide Respiring Bacteria]<ref name= "Adrian2016">Adrian, L. and Löffler, F., 2016. Organohalide Respiring Bacteria. ISBN: 978-3-662-49873-6. [https://doi.org/10.1007/978-3-662-49875-0 doi: 10.1007/978-3-662-49875-0]</ref>  
+
*[[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf| Report.pdf | Validation of Sampling Protocol and the Promulgation of Method Modifications for the Characterization of Energetic Residues on Military Testing and Training Ranges]]<ref name= "Hewitt2009">Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. [[Media:Hewitt-2009 ERDC-CRREL TR-09-6.pdf | Report.pdf]]</ref>  
 +
*[[media:Epa-2006-method-8330b.pdf| U.S. EPA SW-846 Method 8330B: Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC)]]<ref name= "USEPA2006M">U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. [[media:Epa-2006-method-8330b.pdf | Report.pdf]]</ref>
 +
*[[media:Epa-2007-method-8095.pdf | U.S. EPA SW-846 Method 8095: Explosives by Gas Chromatography.]]<ref name= "USEPA2007M">U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. [[media:Epa-2007-method-8095.pdf| Report.pdf]]</ref>
  
 
==Introduction==
 
==Introduction==
Organic compounds with one or more halogens attached are referred to as halogenated organics. The halogens include chlorine (Cl), bromine (Br), fluorine (F), and iodine (I). For example, ethene (C<sub>2</sub>H<sub>4</sub>) is an organic compound. When three of the four hydrogen atoms on ethene are replaced with chlorine, the resulting compound is trichloroethene (TCE; C<sub>2</sub>HCl<sub>3</sub>). 
+
[[File:Beal1w2 Fig1.png|thumb|200 px|left|Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.<ref>Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. [http://dx.doi.org/10.1002/prep.201100105 doi: 10.1002/prep.201100105]</ref><ref>Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13. Also: ESTCP Project ER-1481)  [[media:Walsh-2010 ERDC-CRREL TR-11-15 ESTCP ER-1481.pdf| Report]]</ref>]]
 
+
[[File:Beal1w2 Fig2.png|thumb|left|200 px|Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)]]
The proliferation of halogenated organic compounds in the environment is a consequence of their widespread use in industrial activities. A critical part of many manufacturing processes involves removal of oil and grease from metal, fabrics, and other commodities. Because “like dissolves like,” a common way to remove oil and grease is to soak products in a nonpolar solvent. Non-halogenated hydrocarbons serve this purpose; however, accumulation of hydrocarbon vapors creates the risk of an explosion. Organic chemists solved this problem by adding halogens to the hydrocarbons, rendering them non-flammable. Use of halogenated organic compounds grew dramatically after World War II. With increased use came increased releases to the environment. Initially, halogenated solvents were thought to be inert in the environment, and they were thought not to pose any risk to humans or wildlife. Gradually, the risks associated with chronic human exposure to halogenated solvents were revealed and concern grew about their fate in the environment. Most of the compounds on the United Nations list of persistent organic pollutants (first developed at the Stockholm Convention on Persistent Organic Pollutants) are halogenated organic compounds.  
 
 
 
Microbes possess the ability to remove halogens from halogenated organic compounds. Dehalogenation may occur via a variety of reactions, including oxidation, reduction, or hydrolysis. The halogens are released as halides, i.e., Cl<sup>-</sup>, Br<sup>-</sup>, F<sup>-</sup>, and I<sup>-</sup>. The process of removing a halogen from a halogenated organic compound by a reductive reaction is referred to as reductive dehalogenation. Reductive reactions are ones in which electrons are transferred to the carbon-halogen bond, thereby lowering the oxidation state of the parent compound. Examples reactions are given below. 
 
 
 
One of the earliest studies (1982) to demonstrate that microbes are capable of removing halogens from halogenated organic compounds was performed with halobenzoates (e.g., 3-chlorobenzoate)<ref>Suflita, J.M., Horowitz, A., Shelton, D.R. and Tiedje, J.M., 1982. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science, 218(4577), pp.1115-1117. [https://doi.org/10.1126/science.218.4577.1115 doi: 10.1126/science.218.4577.1115]</ref>. Knowledge about microbial dehalogenation has since grown considerably and now forms the basis for bioremediation, a commonly applied strategy to treat halogenated organic compounds found in soils, groundwater, and wastewater.
 
 
 
As a general rule, bioremediation is a lower cost approach to treatment of halogenated solvents than competing processes based on physical or chemical techniques (e.g., chemical oxidation).  The discovery that microbes are capable of replacing the chlorines on tetrachloroethene (PCE) and TCE, the two most frequently encountered organic contaminants at hazardous waste sites, opened the door to development of current bioremediation strategies. Notably, there was a pause in interest when it was initially believed that the dechlorination process stopped at vinyl chloride (VC), which is more toxic than PCE, TCE, and dichloroethene (DCE) isomers. It was subsequently determined that microbial reduction of VC to ethene occurs<ref>Freedman, D.L. and Gossett, J.M., 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology, 55(9), pp.2144-2151. [http://www.environmentalrestoration.wiki/images/9/96/Freedman-1989-Biological_reductive_dechlorination.pdf Report pdf]</ref>. Ethene is an acceptable endpoint since it poses no human health risks in groundwater. 
 
 
 
Although humans are responsible for a large influx of halogenated organics into the environment as a consequence of improper handling and disposal practices, it has also come to light that there are natural sources of halogenated organic compounds; nearly 5,000 have been catalogued to date<ref>Gribble, G. W., 2010. Naturally Occurring Organohalogen Compounds - A Comprehensive Update. SpringerWien: New York. [https://doi.org/10.1007/978-3-211-99323-1 doi: 10.1007/978-3-211-99323-1]</ref>. For example, marine algae produce chloromethane as part of a chemical defense system to dissuade predation. Consequently, it is not too surprising that natural processes exist to break down halogenated organic compounds, and those processes have been harnessed to help clean up the excessive amounts released to the environment as a consequence of human activity.
 
 
 
There are several types of reaction pathways that involve reduction and dehalogenation, including hydrogenolysis and dihaloelimination<ref>Vogel, T.M., Criddle, C.S. and McCarty, P.L., 1987. ES&T critical reviews: transformations of halogenated aliphatic compounds. Environmental Science & Technology, 21(8), pp.722-736. [http://dx.doi.org/10.1021/es00162a001 doi:10.1021/es00162a001]</ref>. Here, we detail each of these pathways and the conditions under which each is likely to be prevalent. It should be noted that many of the reactions are also possible via abiotic processes (e.g., via reaction with zero valent iron<ref>Arnold, W.A. and Roberts, A.L., 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles. Environmental Science & Technology, 34(9), pp.1794-1805. [http://dx.doi.org/10.1021/es990884q doi:10.1021/es990884q]</ref>). The focus of this article is on biotic reductive processes.
 
 
 
==Hydrogenolysis==
 
Hydrogenolysis is the process by which a carbon—halogen bond is broken and hydrogen replaces the halogen substituent, resulting in release of a halide ion (Fig. 1):
 
[[File:Freedman Article 1 Figure 1.PNG|center|500 px|Figure 1. Generic hydrogenolysis; R = organic compound, X = halide.]]
 
 
 
The process requires an input of reducing power, represented in the above equation by 2e<sup>-</sup>, or two electron equivalents. Hydrogenolysis is the most frequently observed reductive pathway, and as such it is commonly referred to as reductive dehalogenation. Nevertheless, other pathways are also reductive and result in dehalogenation, so the more correct description of the above reaction is hydrogenolysis. This descriptor derives in part from the fact that hydrogen (H<sub>2</sub>) is often a source of the electron equivalents:  
 
[[File:Freedman Article 1 Equation 1.PNG|150px|center|]]
 
 
 
Hydrogenolysis applies to any organohalide, yet it is most commonly associated with removal of chlorine from organic solvents and the term ''reductive dechlorination'' is often used synonymously (mostly amongst practitioners) to describe this reaction. As mentioned above, this is not quite correct, since other pathways are also reductive and result in removal of chlorine atoms, and the correct chemical mechanism is hydrogenolysis.
 
 
 
Hydrogenolysis applies to numerous categories of compounds; we highlight several of the major categories below. The process typically occurs via a respiratory process referred to as organohalide respiration, which is also described below.
 
 
 
===Chlorinated Ethenes===
 
When applied to PCE, hydrogenolysis proceeds in 2e<sup>-</sup> steps through TCE, ''cis''- or ''trans''-1,2- DCE, VC, and ethene, which is also called ethylene (Fig. 2). ''cis''-DCE is the more frequently identified of the 1,2-DCE isomers. Nevertheless, ''trans''-DCE is predominant in some environments<ref>Griffin, B.M., Tiedje, J.M. and Löffler, F.E., 2004. Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1, 2-dichloroethene. Environmental Science & Technology, 38(16), pp.4300-4303. [https://doi.org/10.1021/es035439g doi: 10.1021/es035439g]</ref>. 1,1-DCE is another possible dichloroethene isomer, but it is not typically formed during microbial TCE respiration. The presence of 1,1-DCE in the environment is most typically associated with prior contamination by 1,1,1-trichloroethane, which undergoes several types of transformation, including the abiotic process of dehydrohalogenation to 1,1-DCE.
 
 
 
In some locations, further reduction of ethene to ethane has been reported. This is not a dechlorination reaction, but it is important to mention because ethane may be the terminal product from hydrogenolysis of chlorinated ethenes. Monitoring ethane is recommended for establishing a complete assessment of the fate of chlorinated ethenes.
 
 
 
[[File:Freedman Article 1 Figure 2.PNG|center|800 px|Figure 2. Stepwise reduction of PCE and TCE to ethene and ethane.]]
 
The oxidation state of carbon in an organic compound varies from -4 (e.g., in CH<sub>4</sub>) to +4 (e.g., in CO<sub>2</sub>). The lower the oxidation state, the easier it is for oxidation to occur, and vice versa. 
 
 
 
The oxidation state of the carbon in PCE is +4. With each successive reduction step (via an input of 2e<sup>-</sup>), the oxidation state of the carbon decreases by 2, so that the carbon in TCE has an oxidation state of +2, DCE has 0, VC has -2, and ethene has -4. For this category of contaminants, the final step is critical from a remediation perspective, since VC is a known human carcinogen while ethene poses no human health risks in groundwater. 
 
 
 
===Chlorinated Ethanes===
 
Like chlorinated ethenes, chlorinated ethanes are reduced by hydrogenolysis. One of the most widely evaluated compounds is 1,1,1-trichloroethane, which undergoes sequential reduction to 1,1-dichloroethane and chloroethane. Although further reduction to ethane is possible, it is a much slower reaction and chloroethane is typically regarded as the terminal product. This example serves to illustrate that hydrogenolysis does not always yield complete dechlorination. 
 
 
 
Other commonly encountered chlorinated ethanes undergo hydrogenolysis, including reduction of 1,2-dichloroethane to chloroethane and 1,2-dichloropropane to 1- or 2-chloropropane. 
 
 
 
===Chlorinated Methanes===
 
Carbon tetrachloride (tetrachloromethane) undergoes hydrogenolysis to chloroform (trichloromethane) and then methylene chloride (dichloromethane). These reactions are also catalyzed by reduced iron, which may be generated by iron-reducing bacteria. 
 
 
 
Further reduction to chloromethane and methane is not commonly observed; other anaerobic biodegradation processes, such as organohalide fermentation are more significant for dichloromethane and chloromethane.
 
 
 
===Chlorinated Aromatic Compounds===
 
Hydrogenolysis also occurs for chlorinated aromatic compounds, including chlorinated benzenes, polychlorinated biphenyls (PCBs), chlorinated dioxins (e.g., 2,3,7,8-tetrachlorodibenzo-''p''-dioxin, or TCDD) and furans, and polychlorinated phenols (e.g. pentachlorophenol, or PCP). For these compounds, the pathways are more complicated, since reduction proceeds through multiple isomers, depending on which position on the ring that each specific chlorine atom is removed. Like chlorinated ethanes and methanes, hydrogenolysis of chlorinated aromatic compounds is rarely complete, and the rate of reduction often decreases with a decreasing number of chlorine-carbon bonds. An important exception has been identification of cultures that reduce chlorinated benzenes completely to benzene<ref>Fung, J.M., Weisenstein, B.P., Mack, E.E., Vidumsky, J.E., Ei, T.A. and Zinder, S.H., 2009. Reductive dehalogenation of dichlorobenzenes and monochlorobenzene to benzene in microcosms. Environmental Science & Technology, 43(7), pp.2302-2307. [https://doi.org/10.1021/es802131d doi: 10.1021/es802131d]</ref><ref>Nelson, J.L., Fung, J.M., Cadillo-Quiroz, H., Cheng, X. and Zinder, S.H., 2011. A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environmental Science & Technology, 45(16), pp.6806-6813. [https://doi.org/10.1021/es200480k doi: 10.1021/es200480k]</ref>. 
 
 
 
===Bromo- and Fluoro-Organic Compounds===
 
Hydrogenolysis of brominated organic compounds has been documented. Examples include reduction of 1,2-dibromoethane (ethylene dibromide) to bromoethane and reduction of polybrominated diphenyl ethers. Likewise, defluorination also occurs. For example, reduction of vinyl fluoride to ethene has been reported. Nevertheless, reductive defluorination is characterized by slow rates, if it occurs at all. This is consistent with the general expectation that when the rate-limiting step for a reaction is cleavage of the carbon halogen bond, the order of reactivity is:
 
  
<div align= "center">C—I > C—Br >  C—Cl >  C—F<ref>Wackett, L.P., Logan, M.S., Blocki, F.A. and Bao-Li, C., 1992. A mechanistic perspective on bacterial metabolism of chlorinated methanes. Biodegradation, 3(1), pp.19-36. [https://doi.org/10.1007/bf00189633 doi: 10.1007/BF00189633]</ref></div>
+
Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., [[Wikipedia: Nitroglycerin | nitroglycerin [NG]]] and [[Wikipedia: 2,4-Dinitrotoluene | 2,4-dinitrotoluene [2,4-DNT]]]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., [[Wikipedia: TNT | TNT ]], [[Wikipedia: RDX | RDX ]] and [[Wikipedia: HMX | HMX ]]) that are distributed up to and sometimes greater than) 24 m from the site of detonation<ref name= "Walsh2017">Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. [https://doi.org/10.1002/prep.201700089 doi: 10.1002/prep.201700089] [[media: Walsh-2017-High-Order-Detonation-Residues-Particle-Distribution-PEP.pdf| Report.pdf]]</ref>.
  
For example, hydrogenolysis of trichlorofluoromethane (CFC-11) typically results in accumulation of dichloro- and chlorofluoro-methane; further hydrogenolysis occurs at a much slower rate, if at all. Microbial reductive defluorination of perflurooctanoic acid (PFOA; used in the manufacture of Teflon) has not been reported to any appreciable extent<ref>Liou, J.C., Szostek, B., DeRito, C.M. and Madsen, E.L., 2010. Investigating the biodegradability of perfluorooctanoic acid. Chemosphere, 80(2), pp.176-183. [http://dx.doi.org/10.1016/j.chemosphere.2010.03.009 doi: 10.1016/j.chemosphere.2010.03.009]</ref>.  
+
Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges<ref>Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. [https://doi.org/10.1016/j.chemosphere.2005.04.058 doi: 10.1016/j.chemosphere.2005.04.058]</ref><ref>Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). [https://doi.org/10.1615/intjenergeticmaterialschemprop.2012004956 doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956] [[media:Walsh-2011-Energetic-Residues-Common-US-Ordnance.pdf| Report.pdf]]</ref>. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations<ref>Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. [[media:Epa-2006-method-8330b.pdf| Report.pdf]]</ref>. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation<ref name= "Taylor2004">Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367.[[media:Taylor-2004 TNT PSDs.pdf| Report.pdf]]</ref>
  
==Dihaloelimination==
+
The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).
Dihaloelimination is the process by which two groups, e.g., a hydrogen and chlorine, are removed from adjacent carbon atoms, resulting in the formation of a double bond and release of two halide ions (Fig. 3):
 
  
[[File:Freedman A 1 Fig 3.PNG|center|]]
+
In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest<ref name= "Hewitt2009"/>.
<div align="center">'''Figure 3. Generic dihaloelimination; X<sup>-</sup> = halide.</div>'''
 
  
Although less frequently encountered than hydrogenolysis, dihaloelimination is a critical pathway for several common groundwater contaminants, including reduction of 1,2-dichloroethane and 1,2-dibromoethane (more commonly referred to as ethylene dibromide, or EDB) to ethene (Fig. 4)<ref>Yu, R., Peethambaram, H.S., Falta, R.W., Verce, M.F., Henderson, J.K., Bagwell, C.E., Brigmon, R.L. and Freedman, D.L., 2013. Kinetics of 1, 2-dichloroethane and 1, 2-dibromoethane biodegradation in anaerobic enrichment cultures. Applied and Environmental Microbiology, 79(4), pp.1359-1367. [https://doi.org/10.1128/aem.02163-12 doi: 10.1128/AEM.02163-12]</ref>:
+
{| class="wikitable" style="float: right; text-align: center; margin-left: auto; margin-right: auto;"
 +
|+ Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. <ref name= "Taylor2011"/> and references therein.)
 +
|-
 +
! Military Range Type !! Analyte !! Range<br/>(mg/kg) !! Median<br/>(mg/kg) !! RSD<br/>(%)
 +
|-
 +
| colspan="5" style="text-align: left;" | '''Discrete Samples'''
 +
|-
 +
| Artillery FP || 2,4-DNT || <0.04 – 6.4 || 0.65 || 110
 +
|-
 +
| Antitank Rocket || HMX || 5.8 – 1,200 || 200 || 99
 +
|-
 +
| Bombing || TNT || 0.15 – 780 || 6.4 || 274
 +
|-
 +
| Mortar || RDX || <0.04 – 2,400 || 1.7 || 441
 +
|-
 +
| Artillery || RDX || <0.04 – 170 || <0.04 || 454
 +
|-
 +
| colspan="5" style="text-align: left;" | '''Incremental Samples*'''
 +
|-
 +
| Artillery FP || 2,4-DNT || 0.60 – 1.4 || 0.92 || 26
 +
|-
 +
| Bombing || TNT || 13 – 17 || 14 || 17
 +
|-
 +
| Artillery/Bombing || RDX || 3.9 – 9.4 || 4.8 || 38
 +
|-  
 +
| Thermal Treatment || HMX || 3.96 – 4.26 || 4.16 || 4
 +
|-
 +
| colspan="5" style="text-align: left; background-color: white;" | * For incremental samples, 30-100 increments and 3-10 replicate samples were collected.
 +
|}
  
[[File:Freedman A 1 Fig 4.PNG|center]]
+
==Incremental Sampling Approach==
<div align="center">'''Figure 4. Dihaloelimination of 1,2-dibromoethane to ethene.</div>'''
+
ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere<ref name= "Hewitt2009"/><ref name= "Taylor2011"/><ref name= "USEPA2006M"/>. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.
 +
[[File:Beal1w2 Fig3.png|thumb|200 px|left|Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected]]
  
In this example, the oxidation state of the carbon decreases from -2 in 1,2-dibromoethane to -4 in ethene, i.e., by 2 electrons. Thus, the process is both reductive and results in removal of halides. Other examples of dihaloelimination include reduction of 1- or 2-chloropropane to propene.  
+
DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.
  
==Organohalide Respiration==
+
[[File:Beal1w2 Fig4.png|thumb|right|250 px|Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)]]
A variety of microbes have developed pathways to conserve the energy made available when breaking carbon-halogen bonds via reduction (i.e., hydrogenolysis and dihaloelimination), by using the halogenated organic compounds as terminal electron acceptors<ref name= "Adrian2016"/>. This has led to the notion that certain microbes are capable of “breathing” halogenated organics, analogous to respiration involving oxygen as the electron acceptor<ref name = "McCarty1997">McCarty, P.L., 1997. Breathing with chlorinated solvents. Science, 276(5318), pp.1521-1522. [https://doi.org/10.1126/science.276.5318.1521 doi: 10.1126/science.276.5318.1521]</ref>. When halogenated organic compounds serve as terminal electron acceptors, the process is referred to as organohalide respiration. The discovery of this process adds to the extensive list of terminal electron acceptors that microbes are capable of exploiting. Notably, a few types of microbes are obligate halorespirers, meaning the only known terminal electron acceptors for the cells are halogenated organic compounds. Other types of microbes are facultative with respect to their use of halogenated organics as terminal electron acceptors.
 
  
Under some circumstances, microbes carry out reductive dehalogenation but are unable to conserve energy from the process. For example, several strains of microbes are able to use PCE, TCE and ''cis''-DCE as terminal electron acceptors, whereas reduction of VC to ethene is not a growth linked process<ref>Maymó-Gatell, X., Anguish, T. and Zinder, S.H., 1999. Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195. Applied and Environmental Microbiology, 65(7), pp.3108-3113. [http://www.environmentalrestoration.wiki/images/2/22/Maymo-Gatell-1999-Reductive_dechlorination.pdf Report pdf]</ref><ref>Maymó-Gatell, X., Nijenhuis, I. and Zinder, S.H., 2001. Reductive dechlorination of cis-1, 2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environmental Science & Technology, 35(3), pp.516-521. [https://doi.org/10.1021/es001285i doi: 10.1021/es001285i]</ref>. These cultures are able to reduce VC to ethene when growing with the other chlorinated ethenes as electron acceptors, but when provided with only VC, they are unable to grow. Under these circumstances, the transformation of VC to ethene is referred to as cometabolic, i.e., the transformation process is not linked to growth. In general, organohalide respiration occurs at a higher rate than reduction via cometabolism. Some microbes are capable of reducing VC to ethene via respiration, others are not.
+
==Sampling Tools==
 +
In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils<ref>Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. [[media:Pennington-2006_ERDC-TR-06-13_ESTCP-ER-1155-FR.pdf| Report.pdf]]</ref>. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.
  
Organohalide respiration appears to be a widely-distributed process in nature, even in some environments that have not previously been contaminated by human activity<ref>Krzmarzick, M.J., Crary, B.B., Harding, J.J., Oyerinde, O.O., Leri, A.C., Myneni, S.C. and Novak, P.J., 2012. Natural niche for organohalide-respiring chloroflexi. Applied and Environmental Microbiology, 78(2), pp.393-401. [https://doi.org/10.1128/aem.06510-11 doi: 10.1128/AEM.06510-11]</ref>. The widespread distribution of organohalide respiring microbes is likely related to the natural formation of halogenated compounds, which have been generated on the planet long before human activity increased the rate and amount of halogenated compounds released to the environment. Having the capacity to dehalogenate is essential in natural systems in which organohalide compounds are also synthesized. 
+
[[File:Beal1w2 Fig5.png|thumb|left|200 px|Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. <ref>Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). [[media:Hewitt-2005 ERDC-CRREL TR-05-7.pdf| Report.pdf]]</ref> and Jenkins et al. <ref>Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). [[media:Jenkins-2008 ERDC TR-08-1.pdf| Report.pdf]]</ref>]]
  
The process of organohalide respiration is centered on reductive dehalogenases, an iron–sulfur and coronoid containing family of enzymes that break carbon-halogen bonds. Among the best characterized are the genes involved in reductive dehalogenation of PCE, TCE, ''cis''-DCE, and VC. Several microbes and enzymes are involved in each reduction step (Fig. 5).
+
Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.
  
[[File:Freedman Article 1 Figure 5.PNG|800 px|center]]
+
The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination<ref>Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA.  [[media:Walsh-2009 ERDC-CRREL SR-09-1.pdf | Report.pdf]]</ref>.
  
The identification of dehalogenases has progressed to the point that quantification of key genes (e.g., ''tceA'', ''bvcA'', ''vcrA'', and others) in environmental samples is now a routine part of assessing the capacity for reductive dehalogenation to occur in the environment.
+
==Sample Processing==
 +
While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%<ref name= "Hewitt2009"/>. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in [https://www.epa.gov/sites/production/files/2015-07/documents/epa-8330b.pdf U.S. EPA Method 8330B]<ref name= "USEPA2006M"/> provides details on recommended ISM sample processing procedures.
  
Figure 6 presents a simplified schematic for how energy may be conserved during organohalide respiration. Many details of the process still need to be resolved and likely vary among the growing list of organohalide respiring microbes<ref name = "Jugder2016">Jugder, B.E., Ertan, H., Bohl, S., Lee, M., Marquis, C.P. and Manefield, M., 2016. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation. Frontiers in microbiology, 7. [https://doi.org/10.3389/fmicb.2016.00249 doi: 10.3389/fmicb.2016.00249]</ref>. Reductive dehalogenases are a key component of the respiratory chain, which in the example shown culminates in development of a proton motive force and subsequent synthesis of ATP.
+
Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided<ref>Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. [[media:Cragin-1985 CRREL 85-15.pdf| Report.pdf]]</ref>. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.
  
[[File:Freedman Article 1 Figure 6.PNG|500 px|center]]
+
The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles<ref name= "Walsh2017"/><ref name= "Taylor2004"/>. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).
''':<div align="center">Figure 6. Schematic representation of a microbial cell carrying out organohalide respiration.</div>'''
 
:<div align="center"> Blue shape = the cell membrane; red oval = hydrogenase; yellow oval = electron carrier and</div>
 
:<div align="center">proton translocation; orange oval = reductive dehalogenase; green shape = ATP synthase.</div>
 
:<div align="center">Modified from Jugder et al.<ref name = "Jugder2016"/></div>
 
  
Among the various microbes capable of organohalide respiration, ''Dehalococcoides'' are the most frequently mentioned because of their capacity for complete reduction to ethene<ref>Löffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Müller, J.A., Fullerton, H., Zinder, S.H. and Spormann, A.M., 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International journal of systematic and evolutionary Microbiology, 63(2), pp.625-635. [https://doi.org/10.1099/ijs.0.034926-0 doi: 10.1099/ijs.0.034926-0]</ref>. At this point, members of this genus are the only known that are capable of completely dechlorinating the chlorinated ethenes to ethene, and more specifically, the steps from ''cis''-DCE to VC, and VC to ethene. Their versatility extends to use of many other organohalides as terminal electron acceptors, including polychlorinated biphenyls, chlorinated ethanes, and chlorinated benzenes. ''Dehalococcoides'' use only hydrogen as an electron donor and acetate as a carbon source. Their limited electron donor use stands in contrast to other organohalide respiring microbes, which are able to use a variety of organic compounds as electron donors. Other key types of organohalide respiring microbes (that cannot generate ethene) include ''Dehalobacter'', ''Dehalogenimonas'', ''Desulfitobacterium'', ''Sulfurospirillum'', and a number of ''Deltaproteobacteria''<ref name= "Adrian2016"/> 2. ''Dehalobacter'' includes microbes that respire chlorinated ethanes<ref>Sun, B., Griffin, B.M., Ayala-del-Rı́o, H.L., Hashsham, S.A. and Tiedje, J.M., 2002. Microbial dehalorespiration with 1, 1, 1-trichloroethane. Science, 298(5595), pp.1023-1025. [https://doi.org/10.1126/science.1074675 doi: 10.1126/science.1074675]</ref>, chlorinated ethenes<ref>Holliger, C., Hahn, D., Harmsen, H., Ludwig, W., Schumacher, W., Tindall, B., Vazquez, F., Weiss, N. and Zehnder, A.J., 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Archives of Microbiology, 169(4), pp.313-321. [https://doi.org/10.1007/s002030050577 doi: 10.1007/s002030050577]</ref>, and chloroform<ref>Tang, S., Wang, P.H., Higgins, S.A., Löffler, F.E. and Edwards, E.A., 2016. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates. Frontiers in Microbiology, 7. [https://doi.org/10.3389/fmicb.2016.00100 doi: 10.3389/fmicb.2016.00100]</ref>.
+
<li style="display: inline-block;">[[File:Beal1w2 Fig6.png|thumb|200 px|Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig7.png|thumb|200 px|Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig8.png|thumb|200 px|Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. [https://doi.org/10.1016/S0045-6535(02)00528-3 doi: 10.1016/S0045-6535(02)00528-3]</ref> ]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig9.png|thumb|200 px|Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.<ref>Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). [[media:Walsh-2005 ERDC-CRREL TR-05-6.pdf| Report.pdf]]</ref>.]]</li>
 +
<li style="display: inline-block;">[[File:Beal1w2 Fig10.png|thumb|200 px|center|Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.]]</li>
  
==Environmental Conditions==
+
==Analysis==
With few exceptions, reductive dehalogenation occurs under anoxic conditions<ref name= "Adrian2016"/>. With the exception of nitrate, reductive dehalogenation has been observed in the presence of other anaerobic terminal electron acceptors, including ferric iron and sulfate. The effect of iron and sulfate on the rate and extent of reductive dechlorination is a matter of some debate, with some observing that these compounds (or the reduced forms) are inhibitory (e.g., via competition for hydrogen or the toxicity of sulfide) while others have shown that iron reduction is beneficial to the process<ref name= "Aulenta2006"/><ref>Wei, N. and Finneran, K.T., 2011. Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe (III) reduction does not always inhibit complete dechlorination. Environmental Science & Technology, 45(17), pp.7422-7430. [https://doi.org/10.1021/es201501a doi 10.1021/es201501a]</ref>. An environment in which a community of anaerobes produces an excess of cobalamin (vitamin B<sub>12</sub>) is beneficial, since this coenzyme is an essential component of several dehalogenases<ref>Yan, J., Im, J., Yang, Y. and Löffler, F.E., 2013. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Phil. Trans. R. Soc. B, 368(1616), p.20120320. [https://doi.org/10.1098/rstb.2012.0320 doi: 10.1098/rstb.2012.0320]</ref>. Halogenated compounds can also be reduced in the presence of methanogens; however, methanogens compete for hydrogen as an electron donor and may at times limit the dechlorination reactions.
+
Soil sub-samples are extracted and analyzed following [[Media: epa-2006-method-8330b.pdf | EPA Method 8330B]]<ref name= "USEPA2006M"/> and [[Media:epa-2007-method-8095.pdf | Method 8095]]<ref name= "USEPA2007M"/> using [[Wikipedia: High-performance liquid chromatography | High Performance Liquid Chromatography (HPLC)]] and [[Wikipedia: Gas chromatography | Gas Chromatography (GC)]], respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.
  
Circumneutral pH is considered to be optimum for complete reduction of chlorinated ethenes to ethene<ref>Robinson, C., Barry, D.A., McCarty, P.L., Gerhard, J.I. and Kouznetsova, I, 2009. pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Science of the Total Environment, 407(16), pp.4560-4573. [https://doi.org/10.1016/j.scitotenv.2009.03.029 doi 10.1016/j.scitotenv.2009.03.029]</ref><ref>Vainberg, S., Condee, C.W. and Steffan, R.J., 2009. Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. Journal of Industrial Microbiology & Biotechnology, 36(9), pp.1189-1197. [https://doi.org/10.1007/s10295-009-0600-5 doi: 10.1007/s10295-009-0600-5]</ref>. However, organohalide respiring microbes other than ''Dehalococcoides'' tolerate lower pH levels (e.g., as low as 4). There is growing evidence to indicate that strains of ''Dehalococcoides'' exist that are also tolerant of pH levels below circumneutral. For example, the pH range for a commonly used bioaugmentation culture that includes ''Dehalococcoides'' has a reported pH range of 5.8-6.3 [http://siremlab.com/kb-1-kb-1-plus/ SIREM]. This is an important consideration for bioaugmentation in low pH aquifers, since there are significant challenges associates with adjusting groundwater pH.  
+
{| class="wikitable" style="float: center; text-align: center; margin-left: auto; margin-right: auto;"
 
+
|+ Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.<ref>Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. [[media:Hewitt-2007 ERDC-CRREL TR-07-15.pdf| Report.pdf]]</ref>)
==Significance==
+
|-
Our understanding of the microbial processes that result in reductive removal of halogens from halogenated organic compounds has grown remarkably over the past three decades. The field has advanced from an assumption that halogenated organic compounds are non-biodegradable to our current understanding that not only do microbes perform dehalogenation reactions, but many do so via a growth-linked reductive, respiratory process, as in “breathing with chlorinated solvents”<ref name = "McCarty1997"/>. This understanding of the underlying science has formed the basis for the practice of bioremediation, which has revolutionized the options available for cleaning up hazardous waste sites. Exciting new discoveries await that will open the door to biological treatment of emerging contaminants, as well as improvements in how to treat halogenated organics at complex sites where there are often mixtures of contaminants.  
+
! rowspan="2" | Compound
 +
! colspan="2" | Soil Reporting Limit (mg/kg)
 +
|-
 +
! HPLC (8330)
 +
! GC (8095)
 +
|-
 +
| HMX || 0.04 || 0.01
 +
|-
 +
| RDX || 0.04 || 0.006
 +
|-
 +
| [[Wikipedia: 1,3,5-Trinitrobenzene | TNB]] || 0.04 || 0.003
 +
|-
 +
| TNT || 0.04 || 0.002
 +
|-
 +
| [[Wikipedia: 2,6-Dinitrotoluene | 2,6-DNT]] || 0.08 || 0.002
 +
|-
 +
| 2,4-DNT || 0.04 || 0.002
 +
|-
 +
| 2-ADNT || 0.08 || 0.002
 +
|-
 +
| 4-ADNT || 0.08 || 0.002
 +
|-
 +
| NG || 0.1 || 0.01
 +
|-
 +
| [[Wikipedia: Dinitrobenzene | DNB ]] || 0.04 || 0.002
 +
|-
 +
| [[Wikipedia: Tetryl | Tetryl ]]  || 0.04 || 0.01
 +
|-
 +
| [[Wikipedia: Pentaerythritol tetranitrate | PETN ]] || 0.2 || 0.016
 +
|}
  
 
==References==
 
==References==
 
 
<references/>
 
<references/>
  
 
==See Also==
 
==See Also==
 +
*[https://itrcweb.org/ Interstate Technology and Regulatory Council]
 +
*[http://www.hawaiidoh.org/tgm.aspx Hawaii Department of Health]
 +
*[http://envirostat.org/ Envirostat]

Latest revision as of 18:58, 29 April 2020

The heterogeneous distribution of munitions constituents, released as particles from munitions firing and detonations on military training ranges, presents challenges for representative soil sample collection and for defensible decision making. Military range characterization studies and the development of the incremental sampling methodology (ISM) have enabled the development of recommended methods for soil sampling that produce representative and reproducible concentration data for munitions constituents. This article provides a broad overview of recommended soil sampling and processing practices for analysis of munitions constituents on military ranges.

Related Article(s):


CONTRIBUTOR(S): Dr. Samuel Beal


Key Resource(s):

Introduction

Figure 1: Downrange distance of visible propellant plume on snow from the firing of different munitions. Note deposition behind firing line for the 84-mm rocket. Data from: Walsh et al.[5][6]
Figure 2: A low-order detonation mortar round (top) with surrounding discrete soil samples produced concentrations spanning six orders of magnitude within a 10m by 10m area (bottom). (Photo and data: A.D. Hewitt)

Munitions constituents are released on military testing and training ranges through several common mechanisms. Some are locally dispersed as solid particles from incomplete combustion during firing and detonation. Also, small residual particles containing propellant compounds (e.g., nitroglycerin [NG] and 2,4-dinitrotoluene [2,4-DNT]) are distributed in front of and surrounding target practice firing lines (Figure 1). At impact areas and demolition areas, high order detonations typically yield very small amounts (<1 to 10 mg/round) of residual high explosive compounds (e.g., TNT , RDX and HMX ) that are distributed up to and sometimes greater than) 24 m from the site of detonation[7].

Low-order detonations and duds are thought to be the primary source of munitions constituents on ranges[8][9]. Duds are initially intact but may become perforated or fragmented into micrometer to centimeter;o0i0k-sized particles by nearby detonations[10]. Low-order detonations can scatter micrometer to centimeter-sized particles up to 20 m from the site of detonation[11]

The particulate nature of munitions constituents in the environment presents a distinct challenge to representative soil sampling. Figure 2 shows an array of discrete soil samples collected around the site of a low-order detonation – resultant soil concentrations vary by orders of magnitude within centimeters of each other. The inadequacy of discrete sampling is apparent in characterization studies from actual ranges which show wide-ranging concentrations and poor precision (Table 1).

In comparison to discrete sampling, incremental sampling tends to yield reproducible concentrations (low relative standard deviation [RSD]) that statistically better represent an area of interest[2].

Table 1. Soil Sample Concentrations and Precision from Military Ranges Using Discrete and Incremental Sampling. (Data from Taylor et al. [1] and references therein.)
Military Range Type Analyte Range
(mg/kg)
Median
(mg/kg)
RSD
(%)
Discrete Samples
Artillery FP 2,4-DNT <0.04 – 6.4 0.65 110
Antitank Rocket HMX 5.8 – 1,200 200 99
Bombing TNT 0.15 – 780 6.4 274
Mortar RDX <0.04 – 2,400 1.7 441
Artillery RDX <0.04 – 170 <0.04 454
Incremental Samples*
Artillery FP 2,4-DNT 0.60 – 1.4 0.92 26
Bombing TNT 13 – 17 14 17
Artillery/Bombing RDX 3.9 – 9.4 4.8 38
Thermal Treatment HMX 3.96 – 4.26 4.16 4
* For incremental samples, 30-100 increments and 3-10 replicate samples were collected.

Incremental Sampling Approach

ISM is a requisite for representative and reproducible sampling of training ranges, but it is an involved process that is detailed thoroughly elsewhere[2][1][3]. In short, ISM involves the collection of many (30 to >100) increments in a systematic pattern within a decision unit (DU). The DU may cover an area where releases are thought to have occurred or may represent an area relevant to ecological receptors (e.g., sensitive species). Figure 3 shows the ISM sampling pattern in a simplified (5x5 square) DU. Increments are collected at a random starting point with systematic distances between increments. Replicate samples can be collected by starting at a different random starting point, often at a different corner of the DU. Practically, this grid pattern can often be followed with flagging or lathe marking DU boundaries and/or sampling lanes and with individual pacing keeping systematic distances between increments. As an example, an artillery firing point might include a 100x100 m DU with 81 increments.

Figure 3. Example ISM sampling pattern on a square decision unit. Replicates are collected in a systematic pattern from a random starting point at a corner of the DU. Typically more than the 25 increments shown are collected

DUs can vary in shape (Figure 4), size, number of increments, and number of replicates according to a project’s data quality objectives.

Figure 4: Incremental sampling of a circular DU on snow shows sampling lanes with a two-person team in process of collecting the second replicate in a perpendicular path to the first replicate. (Photo: Matthew Bigl)

Sampling Tools

In many cases, energetic compounds are expected to reside within the soil surface. Figure 5 shows soil depth profiles on some studied impact areas and firing points. Overall, the energetic compound concentrations below 5-cm soil depth are negligible relative to overlying soil concentrations. For conventional munitions, this is to be expected as the energetic particles are relatively insoluble, and any dissolved compounds readily adsorb to most soils[12]. Physical disturbance, as on hand grenade ranges, may require deeper sampling either with a soil profile or a corer/auger.

Figure 5. Depth profiles of high explosive compounds at impact areas (bottom) and of propellant compounds at firing points (top). Data from: Hewitt et al. [13] and Jenkins et al. [14]

Soil sampling with the Cold Regions Research and Engineering Laboratory (CRREL) Multi-Increment Sampling Tool (CMIST) or similar device is an easy way to collect ISM samples rapidly and reproducibly. This tool has an adjustable diameter size corer and adjustable depth to collect surface soil plugs (Figure 6). The CMIST can be used at almost a walking pace (Figure 7) using a two-person sampling team, with one person operating the CMIST and the other carrying the sample container and recording the number of increments collected. The CMIST with a small diameter tip works best in soils with low cohesion, otherwise conventional scoops may be used. Maintaining consistent soil increment dimensions is critical.

The sampling tool should be cleaned between replicates and between DUs to minimize potential for cross-contamination[15].

Sample Processing

While only 10 g of soil is typically used for chemical analysis, incremental sampling generates a sample weighing on the order of 1 kg. Splitting of a sample, either in the field or laboratory, seems like an easy way to reduce sample mass; however this approach has been found to produce high uncertainty for explosives and propellants, with a median RSD of 43.1%[2]. Even greater error is associated with removing a discrete sub-sample from an unground sample. Appendix A in U.S. EPA Method 8330B[3] provides details on recommended ISM sample processing procedures.

Incremental soil samples are typically air dried over the course of a few days. Oven drying thermally degrades some energetic compounds and should be avoided[16]. Once dry, the samples are sieved with a 2-mm screen, with only the less than 2-mm fraction processed further. This size fraction represents the USDA definition of soil. Aggregate soil particles should be broken up and vegetation shredded to pass through the sieve. Samples from impact or demolition areas may contain explosive particles from low order detonations that are greater than 2 mm and should be identified, given appropriate caution, and potentially weighed.

The <2-mm soil fraction is typically still ≥1 kg and impractical to extract in full for analysis. However, subsampling at this stage is not possible due to compositional heterogeneity, with the energetic compounds generally present as <0.5 mm particles[7][11]. Particle size reduction is required to achieve a representative and precise measure of the sample concentration. Grinding in a puck mill to a soil particle size <75 µm has been found to be required for representative/reproducible sub-sampling (Figure 8). For samples thought to contain propellant particles, a prolonged milling time is required to break down these polymerized particles and achieve acceptable precision (Figure 9). Due to the multi-use nature of some ranges, a 5-minute puck milling period can be used for all soils. Cooling periods between 1-minute milling intervals are recommended to avoid thermal degradation. Similar to field sampling, sub-sampling is done incrementally by spreading the sample out to a thin layer and collecting systematic random increments of consistent volume to a total mass for extraction of 10 g (Figure 10).

  • Figure 6: CMIST soil sampling tool (top) and with ejected increment core using a large diameter tip (bottom).
  • Figure 7: Two person sampling team using CMIST, bag-lined bucket, and increment counter. (Photos: Matthew Bigl)
  • Figure 8: Effect of machine grinding on RDX and TNT concentration and precision in soil from a hand grenade range. Data from Walsh et al.[17]
  • Figure 9: Effect of puck milling time on 2,4-DNT concentration and precision in soil from a firing point. Data from Walsh et al.[18].
  • Figure 10: Incremental sub-sampling of a milled soil sample spread out on aluminum foil.
  • Analysis

    Soil sub-samples are extracted and analyzed following EPA Method 8330B[3] and Method 8095[4] using High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC), respectively. Common estimated reporting limits for these analysis methods are listed in Table 2.

    Table 2. Typical Method Reporting Limits for Energetic Compounds in Soil. (Data from Hewitt et al.[19])
    Compound Soil Reporting Limit (mg/kg)
    HPLC (8330) GC (8095)
    HMX 0.04 0.01
    RDX 0.04 0.006
    TNB 0.04 0.003
    TNT 0.04 0.002
    2,6-DNT 0.08 0.002
    2,4-DNT 0.04 0.002
    2-ADNT 0.08 0.002
    4-ADNT 0.08 0.002
    NG 0.1 0.01
    DNB 0.04 0.002
    Tetryl 0.04 0.01
    PETN 0.2 0.016

    References

    1. ^ 1.0 1.1 1.2 Taylor, S., Jenkins, T.F., Bigl, S., Hewitt, A.D., Walsh, M.E. and Walsh, M.R., 2011. Guidance for Soil Sampling for Energetics and Metals (No. ERDC/CRREL-TR-11-15). Report.pdf
    2. ^ 2.0 2.1 2.2 2.3 Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Bigl, S.R. and Brochu, S., 2009. Validation of sampling protocol and the promulgation of method modifications for the characterization of energetic residues on military testing and training ranges (No. ERDC/CRREL-TR-09-6). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-09-6, Hanover, NH, USA. Report.pdf
    3. ^ 3.0 3.1 3.2 3.3 U.S. Environmental Protection Agency (USEPA), 2006. Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Rev. 2. Washington, D.C. Report.pdf
    4. ^ 4.0 4.1 U.S. Environmental Protection Agency (US EPA), 2007. Method 8095 (SW-846): Explosives by Gas Chromatography. Washington, D.C. Report.pdf
    5. ^ Walsh, M.R., Walsh, M.E., Ampleman, G., Thiboutot, S., Brochu, S. and Jenkins, T.F., 2012. Munitions propellants residue deposition rates on military training ranges. Propellants, Explosives, Pyrotechnics, 37(4), pp.393-406. doi: 10.1002/prep.201100105
    6. ^ Walsh, M.R., Walsh, M.E., Hewitt, A.D., Collins, C.M., Bigl, S.R., Gagnon, K., Ampleman, G., Thiboutot, S., Poulin, I. and Brochu, S., 2010. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges: Interim Report 2. (ERDC/CRREL TR-10-13. Also: ESTCP Project ER-1481) Report
    7. ^ 7.0 7.1 Walsh, M.R., Temple, T., Bigl, M.F., Tshabalala, S.F., Mai, N. and Ladyman, M., 2017. Investigation of Energetic Particle Distribution from High‐Order Detonations of Munitions. Propellants, Explosives, Pyrotechnics, 42(8), pp.932-941. doi: 10.1002/prep.201700089 Report.pdf
    8. ^ Hewitt, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R. and Taylor, S., 2005. RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere, 61(6), pp.888-894. doi: 10.1016/j.chemosphere.2005.04.058
    9. ^ Walsh, M.R., Walsh, M.E., Poulin, I., Taylor, S. and Douglas, T.A., 2011. Energetic residues from the detonation of common US ordnance. International Journal of Energetic Materials and Chemical Propulsion, 10(2). doi: 10.1615/IntJEnergeticMaterialsChemProp.2012004956 Report.pdf
    10. ^ Walsh, M.R., Thiboutot, S., Walsh, M.E., Ampleman, G., Martel, R., Poulin, I. and Taylor, S., 2011. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC/CRREL-TR-11-13). Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) TR-11-13, Hanover, NH, USA. Report.pdf
    11. ^ 11.0 11.1 Taylor, S., Hewitt, A., Lever, J., Hayes, C., Perovich, L., Thorne, P. and Daghlian, C., 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. Chemosphere, 55(3), pp.357-367. Report.pdf
    12. ^ Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Hewitt, A.D., Lewis, J., Brochu, S., 2006. Distribution and fate of energetics on DoD test and training ranges: Final Report. ERDC TR-06-13, Vicksburg, MS, USA. Also: SERDP/ESTCP Project ER-1155. Report.pdf
    13. ^ Hewitt, A.D., Jenkins, T.F., Ramsey, C.A., Bjella, K.L., Ranney, T.A. and Perron, N.M., 2005. Estimating energetic residue loading on military artillery ranges: Large decision units (No. ERDC/CRREL-TR-05-7). Report.pdf
    14. ^ Jenkins, T.F., Ampleman, G., Thiboutot, S., Bigl, S.R., Taylor, S., Walsh, M.R., Faucher, D., Mantel, R., Poulin, I., Dontsova, K.M. and Walsh, M.E., 2008. Characterization and fate of gun and rocket propellant residues on testing and training ranges (No. ERDC-TR-08-1). Report.pdf
    15. ^ Walsh, M.R., 2009. User’s manual for the CRREL Multi-Increment Sampling Tool. Engineer Research and Development Center / Cold Regions Research and Engineering Lab (ERDC/CRREL) SR-09-1, Hanover, NH, USA. Report.pdf
    16. ^ Cragin, J.H., Leggett, D.C., Foley, B.T., and Schumacher, P.W., 1985. TNT, RDX and HMX explosives in soils and sediments: Analysis techniques and drying losses. (CRREL Report 85-15) Hanover, NH, USA. Report.pdf
    17. ^ Walsh, M.E., Ramsey, C.A. and Jenkins, T.F., 2002. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. Chemosphere, 49(10), pp.1267-1273. doi: 10.1016/S0045-6535(02)00528-3
    18. ^ Walsh, M.E., Ramsey, C.A., Collins, C.M., Hewitt, A.D., Walsh, M.R., Bjella, K.L., Lambert, D.J. and Perron, N.M., 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points, Alaska, 2003 (No. ERDC/CRREL-TR-05-6). Report.pdf
    19. ^ Hewitt, A., Bigl, S., Walsh, M., Brochu, S., Bjella, K. and Lambert, D., 2007. Processing of training range soils for the analysis of energetic compounds (No. ERDC/CRREL-TR-07-15). Hanover, NH, USA. Report.pdf

    See Also