

US Army Corps of Engineers® Engineer Research and Development Center

Laboratory Demonstration of Abiotic Technologies for Removal of RDX from a Process Waste Stream

David B. Gent, Jared L. Johnson, Deborah R. Felt, Greg O'Connor, Eric Holland, Scott May, and Steven L. Larson June 2010

Laboratory Demonstration of Abiotic Technologies for Removal of RDX from a Process Waste Stream

David B. Gent, Jared L. Johnson, Deborah R. Felt, Eric Holland, Scott May, and Steven L. Larson

Environmental Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Greg O'Connor

Armament Research, Development, and Engineering Center (ARDEC) Building 355 Picatinny Arsenal, NJ 07806-5000

Final report

Approved for public release; distribution is unlimited.

Abstract: The Tennessee Department of Environment and Conservation (TDEC) will soon establish a total maximum daily load (TMDL) for the mass of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) that can be discharged into the Holston River. Holston Army Ammunition Plant (HSAAP), a manufacturer of military explosives in Kingsport, TN, will need additional wastewater treatment in order to comply with this revised regulation. The objective of this effort was to demonstrate two technologies, alkaline hydrolysis and direct electrochemical reduction, as potential pretreatment systems. Three laboratory scale pilot reactors were constructed and tested: a 115-L semi-batch alkaline hydrolysis system, a 106-L rotating electrode batch electrochemical treatment system, and a 300-mL/min packed electrode continuous flow electrochemical treatment system.

All three laboratory scale pilot reactors were effective in removing RDX from HSAAP process wastewater. A 10,000 gallon per day (gpd) alkaline treatment system may be built for \$439,200 with a corresponding estimated annual operating cost of \$296,737. Based on the laboratory results, a 10,000-gpd rotating electrode system may be built for \$687,520, with an annual operating cost of \$184,599. A packed electrode continuous flow reactor may be built for \$1,774,000, with an annual operating cost of \$82,308. The present costs of the evaluated treatment systems are \$2.81M, \$2.16M, and \$2.43M for an alkaline system, a rotating electrode system, and a packed electrode system, respectively. Given the potential of electrochemical treatment systems to operate at much lower costs, continued development and demonstration of electrochemical treatment systems is warranted.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Fig	ures and Tables	v
Pre	face	vi
Uni	t Conversion Factors	ix
Abt	previations	X
1	Introduction	1
	RDX degradation	1
	Alkaline hydrolysis of RDX	2
	Electrochemical destruction of RDX	3
	Reactor configurations	5
	Objective	7
2	Semi-batch Alkaline Treatment Reactor	8
	Background	8
	Laboratory demonstration of semi-batch reactor	8
	Materials and methods	8
	Results and discussion	
	Design considerations	14
	Neutralization	
	Chloride and sulfate at river outfall	15
	Precipitation	16
	Reactor configurations	
	Pilot system designs	21
	Sequenced batch treatment system	21
	Plug flow reactor	
	Cost estimate of an alkaline treatment system	24
	Summary of alkaline treatment systems	26
3	Rotating Electrode Batch Reactor (ReBR)	28
	Background	28
	Laboratory demonstration of rotating electrode batch reactor	30
	Materials and methods	
	Results and discussion	
	Reactor design considerations	34
	Pilot system design	35
	Estimated cost of a rotating electrode batch reactor system	35
	Summary of rotating electrode batch reactor	
4	Packed Electrode Continuous Flow Reactor	
	Background	39

	Laboratory demonstration of packed electrode flow reactor	40
	Materials and methods	40
	Results and discussion	
	Design considerations	44
	Pilot system design	44
	Estimated cost of a packed electrode flow reactor treatment system	48
	Summary of packed electrode flow reactor treatment system	50
5	Summary and conclusions	52
_		_
Re	terences	54
Re Ap	pendix A: Laboratory Pilot Data for Batch Alkaline Hydrolysis System	54 58
Re Ap Ap	pendix A: Laboratory Pilot Data for Batch Alkaline Hydrolysis System pendix B: Laboratory Pilot Data for Rotating Electrode Batch Treatment System	54 58 60
Re Ap Ap Ap	pendix A: Laboratory Pilot Data for Batch Alkaline Hydrolysis System pendix B: Laboratory Pilot Data for Rotating Electrode Batch Treatment System pendix C: Laboratory Pilot Data for Packed Electrode Flow Reactor Treatment System	54 58 60 62
Re Ap Ap Ap	pendix A: Laboratory Pilot Data for Batch Alkaline Hydrolysis System pendix B: Laboratory Pilot Data for Rotating Electrode Batch Treatment System pendix C: Laboratory Pilot Data for Packed Electrode Flow Reactor Treatment System pendix D: Supporting Information from Technology Development Process	54 58 60 62 62

Figures and Tables

Figures

Figure 1. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	2
Figure 2. Mechanism of RDX destruction by alkaline hydrolysis proposed by Balakrishnan et al. (2003).	3
Figure 3. RDX disappearance with time at varying pH in 500-mL reactors	4
Figure 4. Proposed mechanism for the direct electrochemical reduction of RDX in aqueous solution	4
Figure 5. RDX disappearance with time under electrochemical reduction with varying electrode surface areas.	5
Figure 6. Simple block diagrams of three basic reactor types	6
Figure 7. Block flow diagram of laboratory pilot alkaline treatment system.	9
Figure 8. Laboratory pilot system for the alkaline destruction of RDX in a semi-batch reactor.	10
Figure 9. Alkaline hydrolysis of RDX in a 115-L semi-batch reactor.	13
Figure 10. Titration pH 1 with pH and the slope of the titration curve vs. titrant volume used.	18
Figure 11. Illustration of batch treatment with neutralization.	21
Figure 12. Illustration of a sequenced batch treatment plant for 10,000 gpd.	22
Figure 13. Idealized rectangular channel reactor system.	23
Figure 14. Idealized alkaline PFR	24
Figure 15. Apparent first-order kinetic rate parameter of RDX disappearance in electrochemical batch reactors with varying current density and 350 cm ² of cathode surface area	29
Figure 16. Comparison of the mass transfer-based kinetic rate of RDX destruction in small batch reactors and the rotating electrode batch reactor (ReBR).	29
Figure 17. Rotating electrode batch reactor	30
Figure 18. Performance of 106-L laboratory pilot rotating electrode batch reactor relative to small bench-top units for electrochemical destruction of RDX in HSAAP wastewater.	33
Figure 19. Conceptual design of a rotating electrode batch reactor for direct electrochemical destruction of RDX in a process wastewater.	34
Figure 20. Apparent first-order kinetic rate parameter of RDX disappearance in electrochemical batch reactors with varying current density and 350 cm ² of cathode surface area	40
Figure 21. Rectangular channel with packed electrodes, insulator material, and leads; and the final reactor assembly	41
Figure 22. Comparison of mass transfer-based first order decay constants observed in the electrochemical flow-through reactor with those observed in the small batch reactors	45
Figure 23. Observed reduction in RDX concentration across the electrochemical flow reactor as a function of residence time.	45

V

Figure 24. Predicted destruction of RDX in a single flow-through reactor cell containing	
9.45 m ² of reactive area operating at a current density of 7 A/m ²	.47

Tables

Table 1. Design equations solved for reaction time for three simple reactor types	7
Table 2. First-order reaction coefficients and half lives for alkaline destruction of RDX	8
Table 3. Summary of experimental conditions.	9
Table 4. Alkaline hydrolysis of RDX at pH 13.4 in a 115-L semi-batch reactor	12
Table 5. Alkaline hydrolysis of RDX at pH 13 in a 115-L semi-batch reactor	12
Table 6. Comparison of kinetics rates calculated for batch and pilot-scale experiments	14
Table 7. Summary of quantity and cost of treatment and neutralization materials.	15
Table 8. Increase in acid anions from neutralization at IWWTP outfall using pH 13	16
Table 9. IWWTP outfall sulfate by pH and treated volume with 5-Mgd flow	16
Table 10. Hardness of HSAAP water from P-6 by hardness type	
Table 11. Alkalinity results and theoretical values for titration pH 1	
Table 12. Mass of precipitate produced for each pH by replicate	19
Table 13. Reactor equations solved for treatment time.	20
Table 14. Treatment time required for each reactor type	20
Table 15. Tank fill times at design flows.	22
Table 16. PFR calculation with pipe diameter, length, flow, and Reynolds number	23
Table 17. Sodium hydroxide cost based on observed kinetics and design flow	24
Table 18. Major capital equipment and cost for a 10,000-gpd Alkaline Hydrolysis system	25
Table 19. Estimated annual operating cost for a 10,000-gpd alkaline treatment system	25
Table 20. Key functional characteristics of the rotating electrode batch reactor	31
Table 21. Major design characteristics of the proposed rotating electrode batch reactor	35
Table 22. Major equipment capital costs for a 10,000-gpd rotating electrode batch	
Table 23. Estimated annual power cost for a 10,000-gpd rotating electrode batch reactor	
Table 24. Key functional characteristics of electrochemical flow-through reactor	
lable 25. Size of packed electrode reactor arrays required at various treatment goals.	
Table 26. Major equipment capital costs for a 10,000-gpd packed electrode flow reactor	49
lable 27. Estimated annual operating cost for a 10,000-gpd packed electrode flow reactor	49
Table 28. Summary of estimated capital and operating costs for 10 000-god treatment	
systems	52
Table A1. Pilot data for semi-batch alkaline hydrolysis of RDX wastewater at pH 13.3	58
Table A2. Pilot data for semi-batch alkaline hydrolysis of RDX wastewater at pH 3.1	58
Table A3. Total alkalinity titration data of HSAAP water.	59
Table B1. Pilot data for rotating electrode batch reactor current density of 8.33 A/m ²	60
Table C1. Pilot data for removal of RDX from a process waste stream by a packed	
electrode flow reactor, flow condition #1	62

Table C2. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #2	62
Table C3. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #3.	63
Table C4. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #4.	63
Table C5. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #5.	64
Table C6. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #6	64
Table C7. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #7.	65
Table C8. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #8.	65

Preface

This report was prepared for PM Joint Services, U.S. Army Research, Development and Engineering Center, Picatinny Arsenal, NJ. The work was funded by MIPRH17G3046HIF6 titled, "Sample and assess Holston AAP RDX-impacted wastewater and construct scale model to demonstrate HSAAP wastewater treatment technologies." The research was conducted by the U.S. Army Engineer Research and Development Center (ERDC) Environmental Laboratory (EL), Vicksburg, MS, under the sponsorship of the U.S. Army Armament, Research, Development and Engineering Center (ARDEC), Picatinny Arsenal and the U.S. Army ARDEC Program Executive Office for Ammunition, Heavy Metals Office, Picatinny Arsenal.

This project was performed under the general supervision of Dr. M. John Cullinane, Jr., Technical Director, Military Environmental Engineering and Sciences, EL; and Dr. Steven L. Larson, Lead Principal Investigator, EL. In-house review was provided by Daniel Averett and Scott Waisner, Environmental Engineering Branch, EL.

This study was conducted under the direct supervision of W. Andy Martin, Chief, Environmental Processes Branch, and under the general supervision of Dr. Richard E. Price, Chief, Environmental Processes and Engineering Division; and Dr. Elizabeth C. Fleming, Director, EL.

COL Gary E. Johnston was Commander and Executive Director of ERDC. Dr. Jeffery P. Holland was Director.

Unit Conversion Factors

Multiply	By	To Obtain
feet	0.3048	meters
gallons (U.S. liquid)	3.785412 E-03	cubic meters
inches	0.0254	meters
miles (nautical)	1,852	meters
miles (U.S. statute)	1,609.347	meters
miles per hour	0.44704	meters per second
pounds (mass)	0.45359237	kilograms

Abbreviations

Α	Amp
CaCO ₃	calcium carbonate
CSTR	continuous stirred tank reactor
d	day
DoD	Department of Defense
gal	gallons
gpd	gallons per day
RDX	hexahydro-1,3,5-trinitro-1,3,5-triazine
TNX	hexahydro-1,3,5-trinitroso-1,3,5-triazine
DNX	hexahydro-1,3-dinitroso-nitro-1,3,5-triazine
MNX	hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine
HSAAP	Holston Army Ammunition Plant
hr	hour
HRT	hydraulic retention time
HCl	hydrochloric acid
kW-hr	kilowatt-hour
L	liter
m	meter
μg	microgram (10 ⁻⁶ grams)
mg	milligram (10 ⁻³ grams)
mL	milliliter
Mgd	millions of gallons per day
min	minute
PFR	plug flow reactor
lb	pounds
ReBR	rotating electrode batch reactor
SBR	sequencing batch reactor
NaOH	sodium hydrovide
	Sourdin Hydroxide
H_2SO_4	sulfuric acid

Ti	titanium
TMDL	Total maximum daily load
V	volt
w/w	"by weight," mass of substance per total mass of mixture
yr	Year
v/v	"by volume," volume of substance per total volume of mixture

1 Introduction

Holston Army Ammunition Plant (HSAAP), a manufacturer of military explosives located in Kingsport, TN, discharges treated wastewater into the Holston River. The Tennessee Department of Environment and Conservation (TDEC) is in the process of establishing a total maximum daily load (TMDL) that will regulate the mass of hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) that may be discharged. Previous studies have established that the existing wastewater treatment facility removes ~50% of the RDX mass from the HSAAP waste stream. This is insufficient to guarantee compliance with the TMDL, so a revised pretreatment system will be required to remove additional RDX mass from the process wastewater streams at HSAAP.

Several technologies exist and have been demonstrated for the treatment of RDX containing process waters. Most of these technologies were developed originally as treatments for contaminated groundwater. Previous work at the U.S. Army Engineer Research and Development Center, Environmental Laboratory (ERDC-EL) focused on evaluating potential pretreatment systems of RDX containing process waters on the bench in 0.5and 2-L reactors. Continuing that effort, the current effort demonstrates two abiotic technologies, alkaline hydrolysis and direct electrochemical destruction, at a laboratory pilot scale. Multiple reactor configurations are evaluated for each technology. The focus of this project was to develop an innovative, effective, low-cost treatment method for RDX destruction.

RDX degradation

Hexahydro-1,3,5-trinitro-1,3,5-triazine, or RDX (Figure 1), is a powerful military explosive. The United States Environmental Protection Agency (USEPA) has determined RDX to be a possible carcinogen and set the lifetime drinking water health advisory at 2 μ g/L (USEPA 2004). RDX migration into drinking water supplies has resulted in negative impact on Army activities (Clausen et al. 2003).

Several abiotic and biotic methods exist for removing RDX from aqueous waste streams. RDX may be removed from aqueous solution by several grades of granular activated carbon (GAC) (Fleming et al. 1996; Bricka and Fleming 1995), and ex situ treatment using GAC adsorption is ongoing

Figure 1. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).

at some sites (Wani et al. 2007; Clausen et al. 2003). Various oxidative processes have been investigated for the degradation of RDX in water and soils (Bose et al. 1998; Adam et al. 2006; Fleming et al. 1997). RDX is unstable under highly reducing (-150 mV) conditions (Price et al. 2001) and RDX degradation at low oxidation-reduction potentials occurs in both biotic and abiotic systems. RDX has proven to be susceptible to anaerobic biodegradation under a range of cultures and nutrient additions (Freedman and Sutherland 1998; Wani and Davis 2006; Beller 2002; Binks et al. 1995). Iron and ferrous minerals have been demonstrated to degrade RDX in biologically active systems (Shrout et al. 2005; Oh et al. 2001; Wildman and Alvarez 2001) and in abiotic systems (Park et al. 2004; Hundal et al. 1997; Wanaratna et al. 2006; Naja et al. 2008; Kim and Strathmann 2007). The current study investigated two additional methods of RDX destruction in water, alkaline hydrolysis and electrochemical destruction.

Alkaline hydrolysis of RDX

While RDX is stable at low and neutral pHs, it is unstable at high pH. Alkaline hydrolysis of RDX has been reported since 1951 (Epstein and Winkler 1951). Balakrishnan et al. (2003) proposed the mechanism of alkaline destruction of RDX detailed in Figure 2. Kinetic rates for this reaction have been reported in aqueous solutions (Heilmann et al. 1996; Hwang et al. 2006) and soil slurries (Brooks et al. 2003). The end products of alkaline hydrolysis at pH above 12 are primarily formate and nitrate (Davis et al. 2007).

Figure 2. Mechanism of RDX destruction by alkaline hydrolysis proposed by Balakrishnan et al. (2003).

Previous work evaluated alkaline hydrolysis of RDX in an HSAAP wastewater matrix (Gent et al., in preparation). The degradation of RDX in HSAAP wastewater under alkaline hydrolysis is shown in Figure 3. Alkaline hydrolysis experiments were carried out in 500-mL stirred batch reactors. Over the pH range of 12-13.3, the half life of RDX decay ranged from 4.4 hr to 0.2 hr. Given the potential of alkaline hydrolysis to provide a destructive treatment technology for RDX in wastewater, the current work extended previous experiments to design and test a larger scale reactor for alkaline treatment.

Electrochemical destruction of RDX

Electrochemical reduction of RDX has been reported by several groups (Pehkonen et al. 1999; Bonin et al. 2004; Gilbert and Sale 2005; Wani et al. 2005). A proposed degradation mechanism from Bonin et al. (2004) is detailed in Figure 4. Electrochemical reduction has been investigated as a wastewater treatment technology (Doppalapudi et al. 2001) and an in situ treatment of contaminated groundwater (Wani et al. 2005; Gilbert and

Figure 3. RDX disappearance with time at varying pH in 500-mL reactors.

Figure 4. Proposed mechanism for the direct electrochemical reduction of RDX in aqueous solution.

Sale 2005). The final products of RDX transformation were observed to be small compounds (formate, formaldehyde, and nitrate) without buildup of the nitroso breakdown products. Efforts to scale electrochemical reduction to an industrial process have not been made.

Direct electrochemical reduction of RDX in HSAAP wastewater has been evaluated in 500-mL batch reactors (Gent et al., in preparation). The disappearance of RDX in HSAAP wastewater with varying electrode surface areas is shown in Figure 5. The rate of RDX decay under direct electrochemical reduction was found to depend linearly on electrode surface area. Increased current density on the electrodes also provides for increased reaction rates until mass transfer from the bulk fluid to the electrode surface becomes the rate limiting step. Small batch reactors containing 300 cm² of cathode surface area exhibited an RDX treatment half life of 14 minutes at a current density of 7.0 A/m². The current work extends these experiments to test larger scale reactor configurations for the destruction of RDX in wastewater streams.

Figure 5. RDX disappearance with time under electrochemical reduction with varying electrode surface areas.

Reactor configurations

Simple block diagrams of three basic reactor configurations are shown in Figure 6. There are two basic ways to configure a chemical reactor. Batch reactors hold a defined volume of reaction medium for a specified amount of time to accomplish the desired reaction. Semi-batch configuration of

Figure 6. Simple block diagrams of three basic reactor types: (a) Batch reactor, (b) Continuous stirred tank reactor (CSTR), and (c) Plug flow reactor.

a batch reactor may be used if the desired reaction occurs while the reactor volume is inconstant (i.e., during the reactor fill time). Continuous flow reactor configurations accomplish the desired reaction while continuously feeding reactants to and removing products from the reactor system. Continuous flow reactors may be further divided into continuous stirred tank reactors (CSTRs) and plug or pipe flow reactors (PFRs). The effectiveness of any reactor depends on the amount of contact time between reactants that the reactor provides and the rate at which the reaction in question proceeds. Because of this, design of any reactor configuration requires a model for the hydraulic retention time and a model of the reaction kinetics.

Detailed discussion of reaction modeling may be found in reaction engineering texts, such as Fogler (1999). Previous efforts in RDX degradation by both alkaline hydrolysis and electrochemical reduction have confirmed that the first order decay model is a reasonable representation of reaction kinetics:

$$\frac{dC}{dt} = -kC \tag{1}$$

In this model, *C* is the instantaneous concentration of reactant at time *t* in a batch reaction. By completing a mass balance around the reactor, a design equation may be written for each of the three basic reactor types by solving for the time required to complete a specified reduction in reactant concentration (Table 1). Further refinements to these equations for the particular cases of the studied technologies are discussed as part of this report.

Reactor	Design Equation
Batch	$t = \ln\left(\frac{C}{C_0}\right)\left(\frac{1}{-k}\right)$
CSTR	$t = \left(\frac{1}{k}\right) \left(\frac{C_{\rm o}}{C} - 1\right)$
PFR	$t = \frac{1}{k} \left[\ln \left(\frac{C_0}{C} \right) \right]$

Table 1. Design equations solved for reaction time
for three simple reactor types.

Objective

The objective of this effort was to advance the development of two abiotic technologies, alkaline hydrolysis and direct electrochemical destruction, at a laboratory pilot scale with multiple possible configurations. This demonstration will provide the basis for determining the effectiveness of each technology and configuration for end use as an RDX pretreatment system. This effort will increase the body of engineering knowledge on these abiotic systems. It will aid the development of an innovative, effective, lowcost treatment method to remove RDX from wastewater. Since alkaline hydrolysis is a homogeneous reaction, a single reactor configuration was studied, and multiple other configurations were designed using the results. Direct electrochemical reduction depends on mass transfer to the surface of an electrode. Two configurations were studied in this demonstration to determine the most efficient approach to designing large-scale electrochemical reactors. For each technology and configuration, the operational parameters, capital cost, and operating cost for a full-scale pilot system were estimated. These estimates were compared to determine the most promising candidate for an onsite pilot demonstration at HSAAP.

2 Semi-batch Alkaline Treatment Reactor

Background

Aqueous alkaline hydrolysis has been tested in small batch reactors with HSAAP process wastewater (Gent et al., in preparation). Observed half lives for alkaline destruction of RDX are summarized in Table 2. Since alkaline hydrolysis is a homogeneous reaction, the reaction rate coefficient at a given pH will remain constant at larger reactor volumes assuming that the reactants are well mixed. For reactors operating in continuous mode, it is advantageous to add sodium hydroxide directly to the reactor influent stream for pH adjustment. Previous experiments have used 50% NaOH (w/w) for pH adjustment. The density of 50% NaOH is greater than that of water (SG = 1.52). A laboratory demonstration was undertaken to confirm the earlier RDX destruction results, and to test the ability of an injection valve/static mixer system to adjust the pH of an influent stream. This was accomplished by designing a semi-batch alkaline hydrolysis reactor.

рН	Hydroxide Concentration (mM)	Initial RDX Concentration (mg/L)	1 st Order Kinetic Rate Constant k (hr¹)	Standard Error of k (hr ¹)	Half Life (hr)
12.0	10	9.63	0.16	0.01	4.4
12.5	32	8.91	0.50	0.06	1.4
13.0	100	6.85	1.61	0.03	0.4
13.3	200	6.09	3.14	0.05	0.2

Table 2. First-order reaction coefficients and half lives for alkaline destruction of RDX.

Laboratory demonstration of semi-batch reactor

Materials and methods

The pilot-scale study of the semi-batch alkaline treatment system consisted of two separate trials as detailed in Table 3. Wastewater collected from the HSAAP sewer system at manhole P-6 was used in the pilot-scale study. Initial RDX concentrations were 7.2 mg/L and 9.1 mg/L for the first and second experimental trials, respectively. Treatment pH levels of 13 and 13.3 were targeted to provide comparison with the levels previously investigated at the 0.5-L scale. A 45-cm-diameter cylindrical acrylic glass tank with a capacity of 115 L was used as the treatment tank. The tank was constructed by the ERDC modeling shop.

Trial	pН	RDX concentration (mg/L) NaOH added	
1	13.37	7.24	13 mL 50% NaOH /L water
2	13.11	9.14	7.5 mL 50% NaOH /L water

Table 3. Summary of experimental conditions.

Figure 7 is a block diagram of the semi-batch alkaline treatment system and Figure 8 is a photograph of the system. A 1.2-gpm diaphragm pump (Floject, Inc.) fed RDX containing water from a 55-gal drum through a static mixer into the treatment tank. The wastewater pump operated at 5000 mL/min, requiring 22.4 minutes to fill the treatment tank (115-L capacity). Upstream of the static mixer, 50% NaOH was injected into the process stream to raise the wastewater pH. For trial #1 approximately 13 mL of 50% NaOH (w/w) was added for every liter of RDX-laden water, which yielded a sample pH that ranged from 13.35 to 13.38. For trial #2, the ratio of sodium hydroxide to RDX containing water was 7.5 mL per liter resulting in a sample pH range from 13.05 to 13.19. Once the treatment tank was full, the injection system was turned off, and the treated volume was held for 6 hr. This holding time was sufficient for the hydrolysis reaction to come to completion (complete degradation of RDX). Following the alkaline treatment, 50% (w:w) sulfuric acid was added directly to the treatment tank to lower the solution pH below 9.

Highly alkaline conditions made pH electrodes unreliable for monitoring the system pH, so monitoring was accomplished by titration using the Henderson-Hasselbalch equation:

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$
(2)

Figure 7. Block flow diagram of laboratory pilot alkaline treatment system.

Figure 8. Laboratory pilot system for the alkaline destruction of RDX in a semi-batch reactor.

Thirteen samples were taken at time intervals ranging from 5–60 minutes during a total experimental run of 6 hr in each of the trials. The samples were neutralized by adding 6 M HCl. Neutralizing samples stopped the hydrolysis reaction and reduced sample pH to values that did not damage the analytical instruments.

Samples were analyzed for RDX and its associated breakdown products, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). The analyses were performed using high pressure liquid chromatography (HPLC) following a modified USEPA SW-846 method 8330 (USEPA 1998) on a Dionex Acclaim EC2 (cyano) column, with a 1:1 v/v methanol-water mobile phase at 1 mL/min. Sample detection was accomplished by monitoring absorbance at 254 nm using an electrode-diode array spectrophotometric detector. Analytes were identified by comparison to retention times of known standards and were quantified using a 7-point standard curve that was linear from 0.025 to 5 mg/L.

Results and discussion

The nitroso-derivatives MNX, DNX, and TNX were not detected ($<20 \ \mu g/L$) in any samples during this study. The nitroso-derivatives are intermediate products usually associated with anaerobic biodegradation, and are not formed during the alkaline hydrolysis of RDX. Products of RDX alkaline hydrolysis identified in the literature include nitrite, nitrous oxide, ammonia, formate, and formaldehyde (Balakrishnan et al. 2003; Croce and Okamoto 1979; Hoffsommer et al. 1977; Hwang et al. 2006; Gent 2007).

Gent (2007) reported that the alkaline hydrolysis of RDX follows a first order decay model. The laboratory pilot setup in this study was a semibatch reactor with two distinct time intervals to be modeled. The first time interval to be modeled occurred when the treatment tank was being filled. RDX was continually being added to the tank while the alkaline hydrolysis reaction continued. A mass balance for this condition is

$$\frac{dM}{dt} = C_0 dV - kM \tag{3}$$

where *M* is the total mass of RDX in the treatment tank, C_0 is the concentration of RDX in the wastewater, dV is the volumetric flow rate of the wastewater, and k is the first-order reaction constant of alkaline decay of RDX. Assuming that M(0) = 0 and integrating, the instantaneous concentration of RDX in the treatment tank *C* may be modeled as

$$C = \frac{C_0}{kt} \left(1 - e^{kt} \right) \tag{4}$$

where *t* is the reaction time from the point when wastewater begins filling the treatment tank.

The second distinct time interval occurred after the tank was full. At this point, no additional RDX was introduced into the treatment tank and the alkaline hydrolysis reaction proceeded as a first order decay

$$C = C_0 e^{-kt} \tag{5}$$

Results from the two accomplished trials are detailed in Tables 4 and 5. The first order decay constant *k* was determined for each trial by fitting the observed RDX concentrations to Equation 4 during the tank fill,

Trial 1				
Time	RDX (mg/L)	Calculated RDX when Filling (mg/L)	Calculated RDX Concentration after Fill (mg/L)	Diff ²
11:00	7.24	7.24		0
11:10	3.90	4.18		0.082
11:15	3.59	3.32		0.070
11:20	2.58	2.71		0.016
11:25	1.49		1.49	0
11:30	1.14		0.81	0.108
11:45	0.46		0.13	0.107
12:00	0.12		0.02	0.001
12:30	n.a.			n.a.
13:00	n.a.			n.a.
13:30	n.a.			n.a.
14:00	n.a.			n.a.
15:00	n.a.			n.a.
			Sum of Diff ² :	0.392
			k (min ⁻¹) =	0.122

Table 5. Alkaline hydrolysis of RDX at pH 13 in a 115-L semi-batch reactor.

		Trial 2		
Time	RDX (mg/L)	Calculated RDX when Filling (mg/L)	Calculated RDX Concentration after Fill (mg/L)	Diff ²
10:30	9.14			
10:40	7.08	7.39		0.098
10:45	6.80	6.68		0.013
10:50	6.18	6.07		0.011
10:55	5.86		5.86	34.386
11:00	5.10		4.70	25.979
11:15	3.85		2.42	14.784
11:30	2.38		1.25	5.660
12:00	1.23		0.33	1.503
12:30	0.63		0.09	0.396
13:00	0.40		0.02	0.163
13:30	0.16		0.01	0.026
14:30	0.01		0.00	0
			Sum of Diff ² :	83.020
			k (min ⁻¹) =	0.044

and Equation 5 for the remainder of the reaction time. Microsoft Excel[©]'s solver routine minimized the sum of squares of residuals to determine the best fit value of *k*. The experimental data are plotted with the best fit model results in Figure 9. At the higher pH used in the first trial, the first order decay constant was 0.122 min^{-1} , indicating an RDX half life of 5.7 min. A nominal pH of 13 was maintained during the second trial and the first order decay constant for the second trial was 0.022 min^{-1} , indicating an RDX half life of the first order decay constant for the second trial was 0.022 min^{-1} , indicating an RDX half life of the first order decay constant for the second trial was 0.022 min^{-1} , indicating an RDX half life of 15.8 min.

Figure 9. Alkaline hydrolysis of RDX in a 115-L semi-batch reactor.

Comparisons of the kinetic rates for the previously conducted 0.5-L batch and 115-L semi-batch reactor trials are presented in Table 6. First order decay constants of 0.027 min⁻¹ at pH 13 and 0.052 min⁻¹ at pH 13.3 were determined during previous batch studies of alkaline hydrolysis of RDX. These first order decay constants correspond to half lives of 25.7 and 13.3 min, respectively. A first order decay rate of 0.122 min⁻¹ was observed for the first pilot-scale trial and 0.022 min⁻¹ was observed for the second trial. Overall, the calculated first order decay rates were similar for the pilot-scale reactor and the bench scale experiments.

Reactor Type	рН	1 st Order Decay Constant, k (min ⁻¹)	RDX Half Life (min)
Small Batch Poactors	13.0	0.027	25.7
	13.3	0.052	13.3
115 L Semi-Batch	13.1	0.022	15.8
Reactor	13.4	0.122	5.7

Design considerations

Neutralization

After alkaline treatment, the pH in the reactor(s) remains elevated. The high pH must be neutralized before the water can be discharged to an industrial wastewater treatment plant (IWWTP). The target pH for neutralization depends on what is acceptable to the IWWTP and could be as high as pH 9 or 10. Potential neutralizing agents considered at HSAAP are acid waste, re-carbonation with either air or carbon dioxide, hydro-chloric acid (HCl), and sulfuric acid (H₂SO₄).

Preliminary tests of re-carbonation by air and carbon dioxide were conducted. High pH solutions subjected to several days of air and carbon dioxide sparging exhibited no significant change in pH. Therefore recarbonation is not a viable option because of the length of time required.

An existing acid waste stream generated at HSAAP was also considered as a neutralizing agent. The acid strength of the waste and the logistics of supplying the waste stream to the reactor location are uncertain, however, so this option was also rejected.

Hydrochloric or sulfuric acids are the most viable neutralizing agents for the treated HSAAP wastewater. The molar ratios for neutralizing sodium hydroxide with hydrochloric or sulfuric acid to pH 7 are 1:1 and 2:1, respectively. The estimated quantities and costs of neutralizing the batch or plug flow reactors to pH 7 with HCl and H₂SO₄ are listed in Table 7. Neutralization value of pH 7 for the treated wastewater was used here to provide a conservative cost estimate.

		10,000 gpd			40,000 gpd		
рН	[OH-]	NaOH (lb/day)	HCI (lb/day)	H ₂ SO ₄ (lb/day)	NaOH (lb/day)	HCl (lb/day)	H ₂ SO ₄ (Ib/day)
12.0	0.010	15	98	44	267	392	178
12.5	0.316	211	310	140	843	1240	562
13.0	0.100	667	981	444	2669	3923	1778
13.3	0.200	1331	1956	887	5324	7826	3547
		\$/day	\$/day	\$/day	\$/day	\$/day	\$/day
12.0	0.010	3.3	17	7	59	67	27
12.5	0.316	46	53	21	186	211	84
13.0	0.100	147	167	67	587	667	267
13.3	0.200	293	333	133	1171	1330	532

Table 7. Summary of quantity and cost of treatment and neutralization materials.1

 1 Treatment cost based \$/lb of NaOH – \$0.22, HCl - \$0.17, H₂SO₄ - \$0.15.

Chloride and sulfate at river outfall

The use of either HCl or H_2SO_4 as a neutralizing agent will increase the concentration of chloride or sulfate in the waste stream. The estimated concentrations of neutralizing agents at the outfall were calculated by the mixing equation

$$C_{out} = \frac{C_{process} q_{process} + C_w Q_w}{Q_w + q_{process}}$$
(6)

where:

- *C*_{out} = ionic species concentration at the outfall after the IWWTP (mg/L)
- $C_{process}$ = neutralizing agent concentration required (mg/L)
- *q*_{process} = process stream flow (gpd)
 - C_w = ionic species concentration in the IWWTP (assumed zero here) (mg/L)
 - Q_w = assumed IWWTP flow (gpd).

Alkaline hydrolysis may not be a favored treatment option at flows greater than 10,000 gpd because acidic anion concentrations at the IWWTP outfall point of compliance may be relatively high. The chloride or sulfate concentration added to the total IWWTP outfall with a flow of 5 million gallons per day (Mgd) from a process flow of 10,000 gpd will be 22.8 mg/L as Cl⁻ or 10.2 mg/L as SO₄²⁻. These ion concentrations will rise as the flow is increased to 40,000 gpd. The estimated concentrations of Cl⁻ and SO₄²⁻ at the outfall with three different wastewater flows using alkaline treatment at pH 13 are listed in Table 8. Estimated sulfate concentrations at the outfall by pH and a wastewater flow of 5 Mgd are listed in Table 9.

Production	Wastewater	Cŀ	SO4 ²⁻		
(gpd)	(Mgd)	(mg/L)	(mg/L)		
	4	28.5	13.0		
10,000	5	22.8	10.2		
	6	19.0	8.7		
	4	113.2	51.7		
40,000	5	90.8	41.4		
	6	75.7	34.6		

Table 8. Increase in acid anions from neutrali-
zation at IWWTP outfall using pH 13.

Table 9.	IWWTP outfall sulfate by pH and treated
	volume with 5-Mgd flow.

	10,000 gpd		40,000 gpd	
рН	mg/L mg/L		mg/L	mg/L
12	2	1	9	4
12.5	7	3	29	13
13	23	10	91	41
13.3	46	21	181	83

Precipitation

Alkaline hydrolysis treatment of the wastewater stream may result in precipitation due to hard water. Any precipitate formed during RDX pretreatment must be managed in a full-scale system.

Hardness

Hardness is principally caused by the presence of calcium and magnesium ions (Kawamura 1991). Possible precipitation of calcium and magnesium compounds can be caused by adding excess quantities of sodium hydroxide (caustic soda).

The HSAAP water was analyzed using Inductively Coupled Plasma spectroscopy (ICP) to determine the calcium and magnesium concentrations. The HSAAP water contained 32.9 mg/L calcium and 8.4 mg/L magnesium. The total hardness of the water sample was then calculated using Standard Method 2340 B Hardness by Calculation (American Public Health Association (APHA) 1995). Total hardness is defined as the total of the calcium and magnesium ion concentrations when the concentrations are expressed in mg CaCO₃/L. The calcium, magnesium, and total hardness from the HSAAP sample were calculated to be 82.2, 34.6, and 116.8 mg/L as CaCO₃, respectively. These hardness values are shown in Table 10.

Alkalinity

The alkalinity of water is defined as its acid neutralizing capacity. Because the alkalinity of many surface waters is primarily a function of carbonate, bicarbonate, and hydroxide content, alkalinity is also taken as an indication of the con-

Table 10. Hardness of HSAAP water
from P-6 by hardness type.

Hardness Type	Hardness (mg/L as CaCO ₃)
Calcium	82.2
Magnesium	34.6
Total Hardness	116.8

centration of these constituents. Low alkalinity can lead to acidic and corrosive water in public water systems. Acidic water will damage pipe systems and cause pipes to be replaced frequently. Excessively high alkalinity (high pH) can lead to rapid scaling in pipe systems, which also contributes to poor pipe performance.

Some chemical reactions or processes affected by alkalinity include coagulation, disinfection, water softening, and corrosion control. Because pH levels affect the chemical processes that occur during drinking water and wastewater treatment, the determination and monitoring of pH during these processes is of fundamental importance.

Alkalinity was measured in sampled HSAAP wastewater using an acid titration method done in triplicate. The total alkalinity of HSAAP water was 5.7 mg CaCO₃/L as determined using Standard Method 2320B (APHA 1995). The theoretical alkalinity was then calculated using the titration acid normality, the sample volume, and the equilibrium dissociation constants for the carbonate system (Table 11). The titration results are illu-

strated in Figure 10. The pH and the slope of the titration curve were plotted versus the titration volume. Figure 10 graphically illustrates the different types of alkalinity present in the HSAAP water. The HSAAP production wastewater alkalinity is so low that it should not pose a precipitation issue for an alkaline hydrolysis treatment system.

Table 11. Alkalinity results and theo
retical values for titration pH 1.

Alkalinity Type	Results (mg/L as CaCO ₃)	Theoretical (mg/L as CaCO ₃)
CO32-	2.58	1.29
HCO ₃ -	3.22	4.51
H ₂ CO ₃ *	0.24	0.06
Total	6.05	5.94

Figure 10. Titration pH 1 with pH and the slope of the titration curve vs. titrant volume used.

Precipitation during treatment

Traces of a light white precipitate were seen in the bottom of each reactor at the end of each alkaline experiment. Some precipitation was expected since the HSAAP water contains both calcium and magnesium. The precipitate masses were measured by removing the aqueous phase following each batch reactor experiment by pouring the reaction mixture through a glass fiber filter. The retained solids were dried and weighed to determine the amount of precipitated solids. The formula used to calculate the mass of precipitate was

$$Total Solids (mg) = (A - B) * 1000$$
(7)

where A is the weigh boat with filter and precipitate (g), and B is the weigh boat with the filter (g).

The total weights of precipitate observed for each alkaline treatment replicate are detailed in Table 12. The pH 13 and 13.3 replicates contained the highest precipitate masses. At pH 13 the average solids present were 51.9 ± 11.8 mg. The pH 13 highest replicate (61.9 mg) was used to calculate the mass of precipitate that may be produced by alkaline hydrolysis at the design flows. The estimate shows that 10.3 lb/d of CaCO₃ will be produced at a flow of 10,000 gpd and 41.2 lb/d of CaCO₃ produced at 40,000 gpd.

	pH 12		pH 12.5		pH 13		pH 13.3					
Description	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3
Weigh boat tare (g)	5.87	5.77	5.95	5.92	6.04	5.65	5.70	5.58	5.71	6.08	5.92	6.03
Weigh boat + dry filter (g)	6.37	6.28	6.43	6.42	6.52	6.14	6.20	6.06	6.20	6.46	6.35	6.52
Weigh boat + dry filter + precipitate (g)	6.39	6.30	6.44	6.45	6.55	6.18	6.26	6.10	6.26	6.42	6.42	6.58
Solids present (mg)	22.0	21.0	14.6	28.9	22.6	32.5	61.9	38.9	54.9		57.6	61.6
Mean & st. dev.	19.2 ± 4.0		28.0 ± 5.0		51.9 ± 11.8			57.6				

Table 12. Mass of precipitate produced for each pH by replicate.

The majority of the light precipitate mass would be expected to flow out of the reactor with the neutralized effluent into the sewers. The precipitate mass for each replicate experiment is shown in Table 12 along with its mean and standard deviation by pH.

Reactor configurations

In order to design a large-scale treatment process, several parameters must be known or assumed. Some of these parameters include design flow, initial contaminant concentration, target treatment concentration, and configuration of reactor. The three reactor types chosen for the initial investigation of alkaline hydrolysis were a sequenced batch reactor system (SBR), continuous stirred tank reactor (CSTR), and a plug flow reactor (PFR) also known as a tubular reactor.

A batch reactor is a well-stirred tank with no inflow or outflow during the treatment process. A sequenced batch system includes several tanks where treatment takes place in parallel. In a CSTR reactor, the fluid enters the reactor and is immediately dispersed throughout the reactor volume. The result of this mixing is that the concentration leaving the reactor has the same concentration as the material in the reactor.

A number of complete mix reactors can be connected in series. As the number of reactors increases the system begins to mimic a plug flow reactor. In a plug flow reactor, the fluid passes through the reactor and is discharged in the same sequence as it entered the reactor. Fluid flow through a PFR is usually laminar or non-turbulent (Reynolds Number < 2,300) to ensure minimum lateral mixing. A reactor's size is primarily a function of the hydraulic retention time (HRT), which is defined as the average length of time a soluble compound remains in the reactor.

The treatment time required for each reactor type was calculated using the kinetic coefficients determined during the laboratory demonstration. Table 13 lists each reactor type considered along with its design equation solved for time of treatment. The variables used in the design equations are defined such that C_0 is the initial RDX concentration (assumed close to saturation, 50 mg/L), *C* is the final RDX concentration after treatment (0.1 mg/L), *k* is the first order rate coefficient determined by laboratory studies (min⁻¹), *t* is the time required to treat RDX (hr), and *m* is the number of CSTR reactors in series.

Table 13. Reactor equations solved for treatment time.

Reactor	Design Equation
Batch	$t = \ln\left(\frac{C}{C_0}\right)\left(\frac{1}{-k}\right)$
CSTR	$t = \left(\frac{1}{k}\right) \left(\frac{C_0}{C} - 1\right)$
Multiple CSTR	$mt = \left(\frac{m}{k}\right) \left[\left(\frac{C_0}{C}\right)^{\frac{1}{m}} - 1 \right]$
PFR	$t = \frac{1}{k} \left[\ln \left(\frac{C_0}{C} \right) \right]$

The target wastewater flow was estimated to be between 10,000 and 40,000 gpd. These flow values were used as the design flow for scale-up. The observed rate coefficients from the laboratory batch experiments were used to estimate the treatment time, size, and number of reactors required for each reactor type (Table 14). For flow at the lower range (10,000 gpd) a sequential batch reactor system could be used. At flows of 40,000 gpd or higher, a plug flow reactor would be a more efficient design. CSTR reactor calculations for treatment time show that they are not appropriate for high RDX concentrations because of the long treatment time and large reactor volume required.

	Treatment Time (hr)						
рН	BR	CSTR	5 CSTR	PFR			
12.0	39.8	3,199	79	39.8			
12.5	12.3	990	24.5	12.3			
13.0	3.9	310	7.7	3.9			
13.3	2.0	159	3.9	2.0			

Table 14. Treatment time required for each reactor type.

BR – batch reactor; CFSTR – continuous-flow stirred tank reactor, PFR – plug flow reactor. Treatment times are based on batch experiment reaction rate coefficients using each specific reactor equation with treatment from 50 mg/L to 0.1 mg/L.

Pilot system designs

Sequenced batch treatment system

A sequenced batch treatment system consists of multiple tanks operated in parallel. Figures 11 and 12 illustrate a conceptual model of a batch treatment tank and a sequenced batch treatment system capable of handling 10,000-gpd flow. The tank fill times for both design flows are listed in Table 15. While one tank is filling, sodium hydroxide is added to the tank fill system through a chemical feed pump and static mixer at the proper dosing rate. After that tank is filled, another tank would begin filling from the same pump and hydroxide injection system. While the second tank is filling, the treatment process in the first tank is completed. The entire process can be automated by adding timers, pH controllers, conductivity detectors, control valves, and level switches.

After treatment in the first tank is complete, the fluid is neutralized. Once neutralization is complete, the fluid is pumped to waste. The "N" tank in Figure 12 is used to show neutralization as a separate unit process. A separate neutralization tank is not required since each treatment tank can be used for neutralization.

Figure 11. Illustration of batch treatment with neutralization.

Figure 12. Illustration of a sequenced batch treatment plant for 10,000 gpd.

Design Flow gal/day	Tank Fill time hr	Number of Tanks Required
10,000	12	3
40,000	3	9

Table 15. Tank fill times at design flows.

Tank Fill Volume = 5,000 gal.

A 6,000-gal tank was chosen for this design because of its treatment capacity, ease of mixing, and cost. Industrial tank prices almost double when capacity exceeds 7,000 gal. A third tank was added to the design to accommodate peak loading and maintenance. The time to fill each batch reactor at 10,000 gpd is 12 hr.

Plug flow reactor

A PFR could either be a rectangular covered channel or a large-diameter long pipe. A conceptual rectangular covered system resembling a potable water treatment system is shown in Figure 13. For the purpose of this discussion, circular pipes will be used to estimate treatment lengths and cost.

Figure 13. Idealized rectangular channel reactor system.

The pipe lengths for different size PFRs were calculated from the time required to treat RDX from Table 14. The estimated length(s) using several pipe diameters with calculated Reynolds number at the design flows are listed in Table 16. The final pipe diameter and reactor length for the PFR should be determined by available space and pipe cost. The calculations presented here do not include the pipe diameters and lengths required for neutralization. Neutralization can be considered almost instantaneous, so pipe diameter and lengths required may be shorter than the alkaline treatment section.

	10,000 gpd		40,000 gpd		
Nominal Pipe Diameter (in)	Reynolds No.	PFR Pipe Length (ft)	Reynolds No.	PFR Pipe Length (ft)	
12	1,860	274	7,441	-	
14	1,595	201	6,378	-	
16	1,395	154	5,581	-	
18	1,240	122	4,961	-	
20	1,116	99	4,465	-	
22	1,015	81	4,059	-	
24	930	68	3,721	-	
36	620	30	2,480	122	
48	465	17	1,860	68	

Table 16. PFR calculation with pipe diameter, length, flow, and Reynolds number.
A conceptual drawing of a PFR designed to treat RDX at pH 13 and 40,000 gpd is shown in Figure 14. Table 17 lists the quantity and cost of sodium hydroxide necessary to decompose RDX at each pH. As an example, at a flow of 10,000 gpd and pH 13, the estimated cost of sodium hydroxide (50% NaOH) to decompose RDX is \$147/day based on a hydroxide cost of \$0.22/lb.

Figure 14. Idealized alkaline PFR.

		10,000		40,000	
рН	[OH-] (mmol)	NaOH Required (lbs/day)	Cost (\$/day)	NaOH Required (lbs/day)	Cost (\$/day)
12.0	10	67	15	267	59
12.5	32	211	46	845	186
13.0	100	668	147	2,671	588
13.3	200	1,332	293	5,330	1,173

Table 17. Sodium hydroxide cost based on observed kinetics and design flow.

NaOH (50%) cost (\$/Ib) 23 SEP 2007 \$0.22.

Cost estimate of an alkaline treatment system

The estimated capital costs of a four-tank sequenced batch alkaline treatment system are detailed in Table 18. The cost summary is based on a 10,000-gpd alkaline treatment system. The system uses four 6,000-gal polyethylene tanks. The capital cost estimate lists all major equipment required plus miscellaneous costs near 20% of the equipment cost. The estimated equipment cost is \$219,600. Installation labor is estimated to be equal to the equipment purchase cost. This leads to a total estimated capital cost of \$439,200. Material costs were estimated based on available vendor pricing in March of 2008.

Item	Quantity	Cost	Total
6000-gal tanks	4	7,000	28,000
Tank stands	4	4,700	18,800
Pumps	5	4,000	20,000
Mixing motors	4	3,000	12,000
Impellers & shafts	8	1,500	12,000
pH controller	4	1,000	4,000
pH electrode	8	300	2,400
Metering pump	4	600	2,400
Toroidal conductivity	4	1,000	4,000
NC solenoid valves	8	1,000	8,000
Pipe and fittings	1	10,000	10,000
Float switches	8	1,000	8,000
Electronics/control	1	50,000	50,000
Misc.	1	40,000	40,000
	219,600		
Installation labor cost	219,600		
	\$439,200		

Table 18. Major capital equipment and cost for a 10,000-gpd Alkaline Hydrolysis system.

The estimated annual operating costs are listed in Table 19. Chemical costs include 1,331 lb/day of 50% (w:w) of sodium hydroxide to achieve the treatment pH, and 887 lb/day of sulfuric acid to adjust the outlet pH to neutral. A semi-batch reactor system such as this is anticipated to require one operator shift per day with additional assistance estimated at 15% of the operating labor cost. Maintenance costs may be estimated as 2% of the total capital cost (Turton et al. 1998). This yields an estimated annual operating cost for alkaline treatment of \$296,737.

Chemicals Cost	lb/day	lb/yr	\$/lb	\$/year		
NaOH	1,331	485,837	0.22	106,884		
Sulfuric Acid	887	323,632	0.15	48,545		
Annual chemical costs						
	Operating Labor Cost (CoL)					
	Operator Shifts per Day \$/hr d/yr \$/yr					
	1.0	50	288	115,000		
Miscellaneous Labor (0.15 CoL)						
Yearly Maintenance (0.02 Cc)						
Estimated Annual Operating Costs						

Table 19. Estimated annual operating cost for a 10,000-gpd alkaline treatment system.

The present worth (PW) of a 10,000-gpd alkaline treatment system is determined by

$$PW = C_{c} + C_{M} \left[\frac{e^{rn} - 1}{e^{rn} (e^{r} - 1)} \right]$$
(8)

where:

 C_C = capital cost C_M = operating cost r = suitable discount rate n = evaluation period in years (Newman 1991).

The discount rate r is set by the Office of Management and Budget (OMB) as 4.2% for a 10-year evaluation period (OMB 2008). The present cost of this alkaline treatment system is \$2.81M over an evaluation period of 10 years.

Summary of alkaline treatment systems

Laboratory experiments in a 115-L pilot semi-batch reactor confirm the efficacy of alkaline hydrolysis as a method for destroying RDX in process wastewater. Relatively short treatment times (on the order of 3 hr) are achievable at pH 13. By operating a full-scale system of 10,000 gpd in sequenced batch mode, the estimated capital cost of the system is \$439,200. The corresponding estimated annual operating cost of the system is \$296,737.

Alkaline hydrolysis of munitions constituents has several benefits. No specialized electrical equipment is required, and this technology has been used for mitigation of munitions constituent residues in several demonstration products. It is more mature as a technology than direct electrochemical reduction.

There are two main drawbacks to an alkaline hydrolysis technology. First, a 10,000-gpd system would require 1,331 lb/day of 50% sodium hydroxide, and 887 lb/day of sulfuric acid. These chemicals are highly corrosive, and require special handling. Their respective costs lead to relatively high operating costs for the estimated system. Second, the concentration of sulfate from neutralization with sulfuric acid may be high at the outfall to the Holston River. Sulfate is not currently regulated at the HSAAP discharge point but may be regulated in the future if discharge contains a sufficiently high concentration.

3 Rotating Electrode Batch Reactor (ReBR)

Background

The direct electrochemical reduction of RDX is a surface mediated reaction. The reaction can be separated into three distinct processes:

- 1. Mass transfer of RDX from the bulk reaction fluid to the surface of the cathode
- 2. Electron transfer to RDX from the cathode, reducing RDX to small organic compounds
- 3. Mass transfer of the RDX degradation products from the surface of the cathode to the bulk reaction fluid

As the electrochemical destruction process for RDX is scaled up, the key parameters controlling the relative rates of any of these steps may change. Previous experiments have delineated the rate of RDX decay in aqueous solution for electrochemical reduction at differing current densities (i.e. rate of electron transfer from the cathode) (Gent et al., in preparation). Results are summarized in Figure 15.

As current density increases, the RDX decay rate begins to reach a maximum value indicating that mass transfer is becoming the rate-limiting step in the reaction. Current density may be adjusted to operate an electrochemical system at peak efficiency. The key to designing an effective electrochemical treatment system is developing a reactor configuration that facilitates mass transfer from the bulk fluid to the cathode surface.

A bench scale proof-of-concept study was previously conducted for a rotating electrode batch reactor (ReBR) (Gent et al., in preparation). This is a mixed compartment electrochemical reactor in which the electrode array is designed to act as an impeller as well as the reactive surface. The mass transfer based kinetic rates observed in the ReBR are compared to those observed in 500-mL batch reactors in Figure 16. The increased reaction rates are due to improved mass transfer in the ReBR over a small system with static electrodes and a separate mixer. Since the proof-of-concept showed potential, a larger laboratory demonstration reactor was built and tested during this study.

Figure 16. Comparison of the mass transfer-based kinetic rate of RDX destruction in small batch reactors and the rotating electrode batch reactor (ReBR).

Laboratory demonstration of rotating electrode batch reactor

Materials and methods

The batch reaction tank used to create the rotating electrode batch reactor was a 45-cm-diameter clear acrylic cylinder with a total empty volume of 115 L. The final reactor assembly is shown in Figure 17. Electrodes were constructed of an expanded titanium mesh substrate with a mixed

Figure 17. Rotating electrode batch reactor.

precious metal oxide coating (Corrpro Companies, Medina, OH). This material has 2.46 m² of total surface area per square meter of electrode material, and was purchased in 15-cm by 122-cm sheets.

Electrical connections were made by physically crimping 14-AWG stranded copper wire to the electrode material and waterproofing the connection with epoxy resin putty. A total of 16 electrode plates were suspended in the reactor (eight cathodes and eight anodes). Two electrode pairs were hung from each of four cross pieces attached to a hollow 1-in. anodized aluminum shaft. Electrical leads from each electrode were attached to one of two common 8-AWG stranded copper wire leads, which were then threaded through the hollow shaft to the main power transfer coupling.

The power transfer coupling consisted of two copper rings attached to the rotating shaft inside carbon brush electrical contacts. Power was directed through the carbon brush contacts to the copper rings to provide electrical current to the working electrodes.

The key functional characteristics of the reactor are summarized in Table 20. Current was supplied to the reactor cell through the constructed leads by a 30V–300A power supply (TDK Lambda Americas, Inc. San Diego, CA). Previous batch studies had determined the need for periodic current switching to keep the cathode clear of deposited solids. A curTable 20. Key functional characteristics of the rotating electrode batch reactor.Empty Vol.115 LReactor Vol.106 LElectrode Pairs8Reactive Area1.79 m²

rent switching unit was constructed of DC power relays (Square D, Palatine, IL) controlled by a series of timer/controller switches (Autonics Corp., Gyeoungnam, South Korea). A current switching interval of 30 minutes was maintained throughout all experiments with the flow reactor.

Results and discussion

The unbalanced reaction for the electrochemical destruction of RDX is

$$RDX + e^{-} + H^{+} \xrightarrow{k} End Products$$
 (9)

where the aqueous end products have been determined as formate, formaldehyde, and nitrate (Bonin et al. 2004; Wani et al. 2006; Gent

2007). This reaction is irreversible, so an appropriate rate law may be hypothesized as

$$\frac{dC}{dt} = k [RDX]^a [e^-]^b [H^+]^c$$
(10)

where:

C = instantaneous concentration of RDX t = reaction time

k = reaction rate constant,

a, *b*, and c = reaction order constants, and the individual reactant concentrations all contribute to the reaction rate.

Assuming that the electrode efficiencies remain constant through the experiments, this rate law can be reduced to a single order equation:

$$\frac{dC}{dt} = k \left[RDX \right]^a \tag{11}$$

Batch experiments exhibited reaction kinetics that fit well with a first order (a = 1) rate law, so that the batch reaction was effectively modeled by

$$C = C_0 e^{-kt} \tag{12}$$

where

C = instantaneous concentration of RDX

 C_0 = initial concentration of RDX

k = reaction rate constant

t = reaction time.

For a batch reactor accomplishing a surface area mediated reaction, reactor sizing is dependent on both the residence time in the reactor and the surface area of active electrode available for reaction. This makes it useful to use the mass transfer-based kinetic rate k_m

$$k_m = k \frac{V}{A} \tag{13}$$

where:

- V = reactor volume
- A = reactive surface area of the electrode.

Using first-order kinetics and the mass transfer-based kinetic rate constant, the rate law may be solved to determine the final concentration of the reactor C_{out} as

$$C_{out} = C_0 e^{-k_m \frac{A}{V}t}$$
(14)

where A is the total reactive surface area of the reactor.

Experimental trials were carried out varying the current density in the rotating electrode batch reactor. Results from the two current densities tested in this study are compared to the smaller batch reactors in Figure 18. RDX destruction was observed in the 106-L ReBR at current densities of 8.4 and 11.4 A/m², resulting in k_m values of 8.0 × 10⁻⁴ m/min and 12.3 × 10⁻⁴ m/min, respectively.

Figure 18. Performance of 106-L laboratory pilot rotating electrode batch reactor relative to small bench-top units for electrochemical destruction of RDX in HSAAP wastewater.

The half lives of RDX in the reactor were 51 and 33 minutes for the lower and higher current densities, respectively. This is compared to half lives on the order of 10 minutes observed in the 2.7-L ReBR. The lower overall reactivity is explained by the lower amount of surface area per unit volume in the reactor as the volume scales increase.

Reactor design considerations

The key scale-up assumption for the surface area mediated electrochemical reaction is the maintenance of similar mass transfer characteristics across scales. Using this assumption, the determined k_m values from laboratory pilot testing may be carried over to design the pilot and full-scale units. The conceptual design of a pilot scale rotating electrode batch reactor system is detailed in Figure 19.

Figure 19. Conceptual design of a rotating electrode batch reactor for direct electrochemical destruction of RDX in a process wastewater.

Following the analysis of the alkaline system design, a 6,000-gal polyethylene tank was taken as the best combination of size and cost to provide a reactor vessel. An axis and spoke assembly constructed of nonconductive anodized aluminum is suspended within this reactor vessel. Each spoke would support two electrode pairs. The electrode plates for this design are welded sheets of electrode material 60 cm wide by 180 cm tall.

Pilot system design

Two 6,000-gal polyethylene tanks will be used as a design basis for a 10,000-gpd ReBR treatment system. The design components of the reactive vessel are summarized in Table 21. The design hydraulic retention time is approximately 8 hr. This treatment time will allow a single tank to be outfitted with electrodes while the remaining tank acts as an equalization vessel. In this way, electrode material may be used with a minimum amount of down time.

Table 21. Major design characteristics of
the proposed rotating electrode batch
reactor.

Reactive Surface Area =	179 m²
Number of Electrode Plates =	132
Estimated Treatment Time =	8.2 hr
Reactor Capacity =	5,000 al
Treatment Cycles per Day =	~2.5
Current Density =	8.33 m ²
Required Current =	1,461 A
Estimated Voltage =	35 V
	-

From Equation 14, the total amount of reactive electrode surface area required to accomplish an 8-hr treatment time in one vessel is 179 m². By suspending 132 electrode plates (66 electrode pairs) within the reactive vessel, 175 m² of reactive surface area will be made available. This total reactive surface area corresponds to a treatment time of 8.2 hr (Table 21). The current density observed from laboratory pilot studies to maintain a k_m of 1.22×10^{-3} m/min is 8.33 A/m². In order to maintain this current density, the reactive vessel will require a total direct current power supply of 1,461 A at approximately 35 V.

Estimated cost of a rotating electrode batch reactor system

The estimated costs associated with the construction of a rotating electrode batch reactor treatment system are detailed in Table 22. The cost summary is based on a 10,000-gpd rotating electrode batch reactor operated 365 days per year. This reactor capacity is achieved by running two treatment cycles per day through a 6,000-gal reactor vessel,

Item	Quantity	Cost	Total
Reactor and Surge Vessels	2	7,000	14,000
Tank Stands	2	4,700	9,400
Mixing Motors	2	4,000	8,000
Shaft and Frame for Electrodes	1	10,000	10,000
Power Commutator	1	8,000	8,000
Electrode Plates	132	1,480	195,360
Power Supply	1	37,000	37,000
Pipe and Fittings	1	10,000	10,000
Float Switches	12	1,000	12,000
Misc.	1	40,000	40,000
	343,670		
Installation Labor cost - as	343,670		
	687,520		

Table 22. Major equipment capital costs for a 10,000-gpd rotating electrode batch reactor.

with a 6,000-gal equalization vessel used for surge capacity. The specified reactor performance is 99.8% destruction, which will reduce a saturated (50,000 μ g/L) RDX waste stream to 100 μ g/L.

The capital cost estimate lists all major equipment. The single largest driver of capital costs is the cost of electrode plates. Currently, electrode plate costs are estimated at $1,366/m^2$. Given the high costs of electrode material, it will be beneficial to investigate alternative electrode materials, and to determine the maximum useful life of the electrodes.

Estimated annual operating costs are listed in Table 23. Electrical power costs are based on the standard assumption of \$0.10 per kW-hr, and an estimated 1,461 A at 35 V power requirement. A sequenced batch reactor system such as this is anticipated to require one operator shift per day with additional assistance estimated at 15% of the operating labor cost.

Power Cost	kW-hr/cycle	kW-hr/d	\$/d	\$/year		
\$0.10 per kW-hr	420	1,050	105	38,325		
	Operating Labor Cost (CoL)					
	Operator Shifts per Day	\$/hr	d/yr	\$/yr		
	1.0	50	288	115,000		
	Miscellaneous Labor (0.15 CoL) 17,280					
	Yearly Maintenance (0.02 Cc) 13,750					
Estimated Annual Operating Costs \$184,599						

Table 23. Estimated annual power cost for a 10,000-gpd rotating electrode batch reactor.

Maintenance costs may be estimated as 2% of the total capital cost (Turton et al. 1998). This yields an estimated annual operating cost for the rotating electrode batch reactor of \$184,599.

The present worth (PW) of a 10,000-gpd electrochemical treatment system is determined by

$$PW = C_c + C_M \left[\frac{e^{rn} - 1}{e^{rn} \left(e^r - 1 \right)} \right]$$
(15)

where:

 C_C = capital cost

 C_M = operating cost

r = suitable discount rate

n = evaluation period in years (Newman 1991).

The discount rate r is set by the Office of Management and Budget as 4.2% for a 10-year evaluation period (OMB 2008). The present cost of this electrochemical treatment system is \$2.16M over an evaluation period of 10 years.

Summary of rotating electrode batch reactor

Laboratory experiments in a 106-L rotating electrode batch reactor system confirm its efficacy as a novel application of electrolytic treatment for removal of RDX from a process wastewater. Based on the laboratory results, a 10,000-gpd demonstration system may be built for \$687,520. The corresponding annual operating cost would be \$184,599. Power requirements to accomplish RDX removal in this system are approximately one quarter the cost of chemicals required to remove RDX via alkaline hydrolysis.

The drawbacks to this system lie in the unknowns of engineering a largescale system, and in the cost of electrode material. Building a proper frame for suspending the electrodes in a 6,000-gal tank, sourcing a power commutator, and providing mixing power to the electrode frame are efforts that will require new engineering.

The electrode material itself is currently priced at $1,366/m^2$ of material. The costs of either of the electrochemical treatment systems would be greatly improved if a less expensive material could accomplish the same treatment goals within one or both of the systems. The ideal material would possess high surface area, dimensional stability under oxidizing and current reversal conditions, and efficiency in transferring electrons across the electrode/fluid interface.

4 Packed Electrode Continuous Flow Reactor

Background

The direct electrochemical reduction of RDX is a surface-mediated reaction. Because of this, the reaction can be separated into three distinct processes:

- 1. Mass transfer of RDX from the bulk reaction fluid to the surface of the cathode.
- 2. Electron transfer to RDX from the cathode, reducing RDX to small organic compounds.
- 3. Mass transfer of the RDX degradation products from the surface of the cathode to the bulk reaction fluid.

As the electrochemical destruction process for RDX is scaled up, the key parameters controlling the relative rates of any of these steps may change.

Previous experiments have delineated the rate of decay of RDX in aqueous solution for electrochemical reduction at differing current densities (i.e., rate of electron transfer from the cathode) (Gent et al., in preparation). Results of these previous experiments are summarized in Figure 20. Mass transfer becomes the rate-limiting step in an electrochemical reaction as current density increases. The key to designing an effective electrochemical treatment system will be development of a reactor configuration to facilitate mass transfer from the bulk fluid to the cathode surface.

Previously, a bench-scale proof-of-concept study was performed for a packed electrode flow-through reactor (Gent et al., in preparation). In this reactor design, electrode plates are packed closely together in a flow channel parallel to the direction of flow. This configuration allows for a large amount of reactive surface area to be placed in a relatively small reactor volume, reducing the average mass transfer distance from the bulk fluid to the cathode surface. The mass transfer-based kinetic rate for this reactor was on the order of 7×10^{-4} , similar to those observed in the small batch

Figure 20. Apparent first-order kinetic rate parameter of RDX disappearance in electrochemical batch reactors with varying current density and 350 cm² of cathode surface area (95% confidence intervals).

reactors. Since the proof-of-concept model showed potential as the basis of an efficient pilot treatment system, a larger laboratory demonstration reactor was built and tested.

Laboratory demonstration of packed electrode flow reactor

Materials and methods

The packed electrode continuous flow reactor cell was constructed of 0.5-in. (1.25-cm) clear acrylic (Figure 21). The basic unit is a rectangular channel 15 cm wide by 6.35 cm deep and 122 cm long with flanged end pieces. The end caps are also rectangular channels 15 cm wide by 8 cm deep by 25 cm long with 0.5-in. nominal NPT fittings to facilitate connection to a pumping system.

Electrodes were constructed of an expanded titanium mesh substrate with a mixed precious metal oxide coating (Corrpro Companies, Medina, OH). This material has 2.46 m² of total surface area per square meter of electrode material, and was purchased in 15-cm by 122-cm sheets. Electrical connections were made by physically crimping 14-AWG stranded copper wire to the electrode material and waterproofing the connection with epoxy resin putty.

Figure 21. Rectangular channel with packed electrodes, insulator material, and leads; and the final reactor assembly.

The reactor cell was loaded by layering electrodes with 15-cm by 124-cm polypropylene mesh material as insulators. A total of 18 electrode plates were packed into the reactor with alternating electrical leads protruding from the upper and lower ends of the rectangular channel. The electrical leads at each end of the reactor were bolted together with a common lead of 10-AWG stranded copper wire and waterproofed with epoxy resin putty to create two main electrical leads for the reactor cell. The two leads for the reactor cell were brought out through the end caps using waterproof strain relief connections to create a watertight electrochemical reaction cell. The final reactor assembly was suspended vertically within a steel frame to provide access during the experimental runs.

The key functional characteristics of the reactor are summarized in Table 24. Current was supplied to the reactor cell through the constructed leads by a 30V– 300A power supply (TDK Lambda Americas, Inc. San Diego, CA). Water was supplied to the reactor by means of a

Table 24. Key functional characteristics of electrochemical flow-through reactor.

L x W x H =	15 x 6.35 x 122 cm
Total Vol. =	11.62 L
Void Vol. =	9.61 L
Reactive Area =	4.05 m²

constant volume piston pump (Blue-White Industries, Huntington Beach, CA) so that the reactor would operate at a constant flow rate in upflow mode.

Previous batch studies determined the need for periodic current switching to keep the cathode clear of deposited solids, so a current switching unit was constructed of DC power relays (Square D, Palatine, IL) controlled by a series of timer/controller switches (Autonics Corp., Gyeoungnam, South Korea). A current switching interval of five minutes was maintained throughout all experiments with the flow reactor.

Results and discussion

The unbalanced reaction for the electrochemical destruction of RDX is

$$RDX + e^{-} + H^{+} \xrightarrow{k} End Products$$
 (16)

where the end products have been determined as formate, formaldehyde, and nitrate (Gent 2007). This reaction is irreversible, so an appropriate rate law may be hypothesized as

$$\frac{dC}{dt} = k \left[RDX \right]^a \left[e^{-} \right]^b \left[H^{+} \right]^c \tag{17}$$

where:

C = instantaneous concentration of RDX
t = reaction time
k = reaction rate constant
a, b, and c = reaction order constants, and the individual reactant concentrations all contribute to the reaction rate.

Assuming that the electrode efficiencies remain constant through the experiments, this rate law can be reduced to a single-order equation:

$$\frac{dC}{dt} = k \left[RDX \right]^a \tag{18}$$

Batch experiments exhibited reaction kinetics that fit well with a first order (a = 1) rate law, so that the batch reaction was effectively modeled by

$$C = C_0 e^{-kt} \tag{19}$$

where:

C = instantaneous concentration of RDX

 C_0 = initial concentration of RDX

k = reaction rate constant

t = reaction time.

For a continuous flow reactor, reactor sizing is dependent on both the residence time in the reactor and the surface area of active electrode available for reaction. This makes it useful to apply the mass transfer-based kinetic rate k_m

$$k_m = k \frac{V}{A} \tag{20}$$

where:

V = reactor volumeA = reactive surface area of the electrode.

Using first-order kinetics and the mass transfer-based kinetic rate constant, the rate law becomes

$$\frac{dC}{dx} = -k_m \frac{A}{Q} \tag{21}$$

where:

x = distance along the flow path of the reactor

A' = surface area as a function of distance along the reactor

Q = volumetric flow rate of the reactor.

This rate law may be solved to determine the effluent concentration of the reactor C_{out} as

$$C_{out} = C_0 e^{-k_m \frac{A}{Q}}$$
(22)

where *A* is the total reactive surface area of the reactor.

Both current density and flow rate (residence time) were varied during experimental runs. Results for the observed first order decay rates are shown alongside those observed during earlier batch trials in Figure 22. The kinetic rates for the larger reactors are not as high as those observed in small batch trials. This is most likely due to the laminar flow regime observed in the flow reactor impacting mass transfer to the surface of the electrode. There was no significant change in the observed k_m over the range of current densities studied. This indicates that the reactor is running under mass transfer-controlled conditions.

Effluent/influent concentration (C/C_0) is plotted as a function of retention time in the reactor in Figure 23. Flow rate trials were carried out at a current density of 7.4 A/m², corresponding to a total reactor current of 30 A. This current was accomplished at a potential of 6.3 V and a power input of 0.19 kW, or 4.5 kW-hr/d. The total power input corresponding to 97.4% destruction of RDX was 8.8 kW-hr/m³ treated water. At 77.8% RDX destruction the required power input for treatment was 3.0 kW-hr/m³.

The mass transfer-based kinetic rate across the flow rates studied ranged from 3.3×10^{-4} to 4.2×10^{-4} m/min. With the large available surface area for reaction in the reactor, the residence time-based half life for RDX destruction in the reactor was 4.23 min, much less than the half lives observed during batch experiments.

Design considerations

The key scale-up assumption for this surface area-mediated reaction is the maintenance of similar mass transfer characteristics across scales. With this assumption, the observed k_m values from laboratory pilot testing may be carried over to design the pilot unit. In the laboratory pilot studies, k_m was consistently close to 3.0 x 10⁻⁴ m/min. This value will be used for scale-up calculations moving forward.

Pilot system design

Titanium (Ti) mesh electrode material is produced in 15-cm by 122-cm sheets, and this sheet size will be used as a design basis. The basic unit of a full-scale packed electrode flow reactor will be a square channel 15 cm wide by 15 cm deep by 122 cm long. This size allows use of the currently available electrode material. A modular system of these reactor cells can be used in parallel or series to build a final treatment system.

Figure 23. Observed reduction in RDX concentration across the electrochemical flow reactor as a function of residence time.

The rectangular channel laboratory pilot reactor accommodated 18 electrode panels at a channel depth of 6.35 cm. A square channel reactor cell will accommodate 42 panels, or 21 electrode pairs for a total reactive area of 9.45 m² per reactor cell. Given this design reactive area and the assumed k_m , the achievable flow rate of a single reactor cell Q may be calculated from the required treatment goal. Using Equation 23

$$Q = \frac{(k_m A)}{\left[\ln(C_0 / C)\right]}$$
(23)

 k_m is the mass transfer-based first-order kinetic rate constant, A is the reactive (cathodic) electrode surface area, C_0 is the initial concentration of RDX in the treatment stream, and C is the final RDX concentration leaving the reactor cell.

The predicted performance of a single reactor cell is shown in Figure 24. A full-scale treatment system may now be sized using a total system flow rate and the required treatment goals. The maximum flow rate of a single reactor cell can be calculated given the required treatment goal. An estimated number of required reactor cells can then be determined by dividing the total required flow rate by the flow rate of a single reactor cell.

Figure 24. Predicted destruction of RDX in a single flow-through reactor cell containing 9.45 m^2 of reactive area operating at a current density of 7 A/m².

The required number of reactor cells will be operated as an array of reactors in some combination of series and parallel flow arrangements. HSAAP has indicated that the space available for construction of a treatment system contains about 30 ft of head space. The proposed treatment system will consist of an array of parallel flow columns, each consisting of five reactor cells operating in series.

The predicted sizing requirements of the full-scale treatment systems are detailed in Table 25. The size requirements of this design were based on the observed performance of the laboratory pilot packed electrode flow reactor. Reactor size increases exponentially as the required percent destruction increases. This is a result of the observed first-order kinetics. Increasing flow rate leads to a linear increase in the required number of reactor cells. From these observations it is apparent that building the smallest possible reactor unit will result from treating a waste stream with concentrated RDX at a low flow rate.

40,000 GPD		400,000 GPD			800,000 GPD			
Percent Destruction	Required Reactor Cells	Required Reactor Columns	Percent Destruction	Required Reactor Cells	Required Reactor Columns	Percent Destruction	Required Reactor Cells	Required Reactor Columns
99.8	230	46	99.8	2350	470	99.8	4695	939
95	115	23	95	1115	223	95	2230	446
90	90	18	90	865	173	90	1715	343
80	60	12	80	600	120	80	1200	240

Table 25. Size of packed electrode reactor arrays required at various treatment goals.

Estimated cost of a packed electrode flow reactor treatment system

The estimated costs associated with construction of a packed electrode flow-through treatment system are detailed in Table 26. The following cost summary is based on a 10,000-gpd packed electrode flow reactor operated 365 days per year. The specified reactor performance is 99.8% destruction, which will reduce a saturated (50,000 μ g/L) RDX waste stream to 100 μ g/L.

The capital cost estimate lists all major equipment and the single largest driver of capital costs is the cost of electrode plates. Currently, the estimated electrode plate cost is \$250 per plate. It will be beneficial to

Item	Quantity	Cost	Total
Reactor cells	60	500	30,000
Electrode Plates	2,520	250	630,000
Pumps	12	4,100	49,200
Power Supplies	12	8,400	100,800
Data Acquisition System	1	15,000	15,000
Pipe and Fittings	1	10,000	10,000
Float Switches	12	1,000	12,000
Misc.	1	40,000	40,000
	887,000		
Installation Labor cost - as	887,000		
	\$1,774,000		

Table 26. Major equipment capital costs for a 10,000-gpd packed electrode flow reactor.

investigate alternative electrode materials and to determine the maximum useful life of the electrodes, given the high costs of electrode material. Pump costs are based on individual hose pumps for each reactor column, a preferred specification for the HSAAP facility. The total estimated capital cost for a packed electrode reactor system is \$1,774,000.

Estimated annual operating costs are listed in Table 27. Electrical power costs are based on the standard assumption of \$0.10 per kW-hr, and an estimated 350 A at 10 V power requirement. A continuous flow reactor system such as this is anticipated to require 1/3 operator shifts per day with additional assistance estimated at 15% of the operating labor cost. Maintenance costs may be estimated as 2% of the total capital cost (Turton et al. 1998). This yields an estimated annual operating cost for the rotating electrode batch reactor of \$82,308.

Power Cost		kW-hr/1,000 gal	kW-hr/d	\$/d	\$/year
\$0.10 per kW-hr		8.4	84	8.4	3,066
Operating Labor Cost (CoL)					
Operator Shifts per Day 0.33		Shifts per Day	\$/hr	d/yr	\$/yr
			50	288	38,016
Miscellaneous Labor (0.15 CoL)					5,702
Yearly Maintenance (0.02 Cc)				35,480	
Estimated Annual Operating Costs					\$82,308

Table 27. Estimated annual operating cost for a 10,000-gpd packed electrode flow reactor.

The present worth (PW) of a 10,000-gpd electrochemical treatment system is determined by

$$PW = C_{c} + C_{M} \left[\frac{e^{rn} - 1}{e^{rn} (e^{r} - 1)} \right]$$
(24)

where:

 C_C = capital cost C_M = operating cost r = suitable discount rate n = evaluation period in years (Newman 1991).

The discount rate r is set by the Office of Management and Budget as 4.2% for a 10-year evaluation period (OMB 2008). The present cost of this electrochemical treatment system is \$2.43M over an evaluation period of 10 years.

Summary of packed electrode flow reactor treatment system

Laboratory experiments in a 300 mL/min packed electrode continuous flow reactor system confirm its efficacy as a novel application of electrolytic treatment for removal of RDX from a process wastewater. Based on the laboratory results, a 10,000-gpd demonstration system may be built for \$1,774,000. The corresponding annual operating cost would be \$82,308.

This electrochemical system is a simply arranged reactor with no moving parts other than the supply pumps. The design of full-scale systems is straightforward, and the column array design makes the system flexible. Any number of the columns may be put into operation at a given time depending on the waste stream flow rate and treatment requirements.

The cost of power required to remove RDX from the waste stream is approximately $1/50^{\text{th}}$ the cost of chemicals required in an alkaline hydrolysis system to accomplish the same treatment. The main drawback of this system is its relatively high capital cost. The electrode material itself is currently priced at \$1,366/m² of material. Either of the electrochemical treatment systems would be greatly improved if a less expensive material could accomplish the same treatment goals within one or both of the systems. The ideal material would possess high surface area, dimensional stability under oxidizing and current reversal conditions, and efficiency in transferring electrons across the electrode/fluid interface.

5 Summary and conclusions

The objective of this effort was to demonstrate two RDX destruction technologies at a small pilot scale: alkaline hydrolysis and direct electrochemical destruction. Both technologies have multiple possible configurations for end use as pretreatment systems. Three laboratory-scale pilot reactors were constructed and tested: a semi-batch alkaline hydrolysis system, a rotating electrode batch electrochemical treatment system, and a packed electrode continuous flow electrochemical treatment system. Each of the pilot systems was effective in removing RDX from a process wastewater. Information developed during laboratory testing provides a basis for the design of larger scale processes. For each technology configuration, a 10,000-gpd treatment system was designed for comparison.

Estimated capital and treatment costs, including a 10-year net present cost for 10,000-gpd demonstration treatment systems, are summarized in Table 28. The capital cost of each system is estimated from the scale-up design using known material costs. Alkaline hydrolysis presents the lowest capital cost, while the electrochemical treatment systems cost more to construct. The increased capital costs of the electrochemical systems are due to the cost of the electrode material used for treatment. Because of the high cost of chemicals required in the alkaline treatment system, both electrochemical systems have lower operating costs. This leads to lower present costs over 10 years when comparing the electrochemical systems to the alkaline system.

System Configuration	Estimated Capital Cost	Estimated Annual Operating Cost	Estimated Treatment Cost per Thousand Gallons	Net Present Cost (10 years)
Alkaline sequenced batch reactor	\$439,200	\$296,737	\$81.30	\$2.81M
Rotating electrode batch electro- chemical reactor	\$687,520	\$184,599	\$50.57	\$2.16M
Packed electrode continuous flow electrochemical reactor	\$1,774,000	\$82,308	\$22.55	\$2.43M

Table 28. Summary of estimated capital and operating costs for 10,000-gpd treatment systems.

Uncertainty remains regarding the replacement cost of electrodes over the life of the electrochemical systems. The electrode lifespan has not been definitively determined for electrochemical treatment systems. While titanium mesh electrodes have been successfully used in groundwater treatment systems over long periods, the ultimate service life is an unknown. The present cost analysis can be expanded to include electrode replacement as a comparison. The rotating electrode system maintains a present cost lower than the alkaline system assuming that electrode replacement occurs every three years or more. The packed electrode system requires electrode replacement every 10 years or more to remain less costly over the life of the system.

Additional parameters to be considered in the selection of a pretreatment system at HSAAP include process safety, ease of use, and long-term reliability. Both alkaline and electrochemical systems will require engineering controls to limit the possibility of chemical or electrical safety concerns. The handling of the concentrated chemicals required for alkaline hydrolysis will represent an ongoing and labor-intensive safety concern. Neither of the electrochemical systems requires chemical addition or hazardous materials to operate.

Based on this effort, it is concluded that:

- Alkaline hydrolysis may be an effective pretreatment for RDX-laden processing wastewaters. A system can be constructed at costs lower than those required for electrochemical treatment. Ongoing chemical requirements are substantial, leading to a higher net present cost for the alkaline treatment system over 10 years.
- 2. Electrochemical treatment systems have the potential to operate at much lower operating costs than those observed for alkaline systems. The designed systems have lower net present costs than a comparable alkaline treatment system. The continued development of electrochemical treatment systems for the destruction of RDX in process waters is warranted.
- 3. Electrode service life determination will be required for a rigorous cost comparison of electrochemical technologies. The electrode manufacturer cites a consumption rate of less than 1 mg/amp-yr at current densities as high as 100 A/m² in fresh water, though without further testing they will not give an estimated lifespan in this application.

References

- Adam, M., S. Comfort, D. Snow, D. Cassada, M. Morley, and W. Clayton. 2006. Evaluating ozone as a remedial treatment for removing RDX from unsaturated soils. *J. of Env. Eng.* 132(12):1580–88.
- American Public Health Association (APHA). 1995. *Standard methods for the examination of water and wastewater, 19th ed.* Washington, DC.
- Balakrishnan, V. K., A. Halasz, and J. Hawari. 2003. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX and CL20: New insights into degradation pathways obtained by the observation of novel intermediates. *Environ. Sci. Technol.* 37:1838–1843.
- Beller, H. R. 2002. Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. *Water Res.* 36:2533–40.
- Binks, P. R., S. Nicklin, and N. C. Bruce. 1995. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by stenotrophomonas maltophilia PB1. App. and Env. Microbiol. 61(4):1318–22.
- Bonin, P. M. L., D. Bejari, L. Schutt, J. Hawari, and N. J. Bunce. 2004. Electrochemical reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine in aqueous solutions. *Env. Sci. Tech.* 38:1595–99.
- Bonnett, P. C., and B. Elmasri. 2002. Base hydrolysis process for the destruction of energetic materials. Special Publication ARWEC-SP-01001. Picatinny Arsenal, NJ: U.S. Armament Research, Development and Engineering Center, Warheads, Energetics and Combat Support Armaments Center.
- Bose, P., W. H. Glaze, and D. S. Maddox. 1998. Degradation of RDX by various advanced oxidation processes: I. Reaction rates. *Water Res.* 32(4):997–1004.
- Bricka, R. M., and E. C. Fleming. 1995. Use of activated carbon for the treatment of explosives-contaminated groundwater at the Picatinny Arsenal. Technical Report EL-95-31. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
- Brooks, M. C., J. L. Davis, S. L. Larson, D. R. Felt, and C. C. Nestler. 2003. Topical lime treatment for containment of source zone energetics contamination. ERDC/EL TR-02-10. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Clausen, J., J. Robb, D. Curry, and N. A. Korte. 2003. A case study of contaminants on military training ranges: Camp Edwards, Massachusetts, USA. *Env. Poll.* 129:13– 21.
- Croce, M., and Y. Okamoto. 1979. Cationic micellar catalysis of the aqueous alkaline hydrolyses of 1,3,5-triaza-1,3,5-trinitrocyclohexane and 1,3,5,7-tetraaza-1,3,5,7tetranitrocyclooctane. *Org. Chem.* 44(13):2100–2103.

- Davis, J. L., C. C. Nestler, D. R. Felt, and S. L. Larson. 2007. Effect of treatment pH on the end products of the alkaline hydrolysis of TNT and RDX. ERDC/EL TR-07-4. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Davis, J. L., M/C. Brooks, S. L. Larson, C. C. Nestler, and D. R. Felt. 2006. Lime treatment of explosives-contaminated soil from munitions plats and firing ranges. *Soil and Sediment Contamination* 15(6):565–580.
- Deng, Y. and J. D. Englehardt. 2006. Electrochemical oxidation for landfill leachate treatment. *Waste Management* 27(3):380–388.
- Doppalapudi, R., D. Palaniswarmy, G. Sorial, and S. W. Maloney. 2001. *Pilot scale* reactor for electrochemical reduction of nitroaromatics in water. ERDC/CERL TR-01-69. Champaign, IL: U.S. Army Engineer Research and Development Center.
- Epstein, S., and C. A. Winkler. 1951. Studies on RDX and related compounds VI: The homogeneous hydrolysis of cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX) in aqueous acetone and its application to anaylsis of HMX in RDX(B). *Can. J. of Chem.* 29:731–733.
- Doppalapudi, R. B., G. A. Sorial, and S. W. Maloney. 2003. Electrochemical reduction of 2,4-dinitrotoluene in a continuous flow laboratory scale reactor. *J. Envir. Engrg.* 129:192.
- Fleming, E. C., R. Cerar, and K. Christenson. 1996. Removal of RDX, TNB, TNT, and HMX from Cornhusker Army Ammunition Plant waters using adsorption technologies. Technical Report EL-96-5. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
- Fleming, E. C., M. E. Zappi, E. Toro, R. Hernandez, K. Myers, P. Kodukula, and P. Gilbertson. 1997. Laboratory assessment of advanced oxidation processes for treatment of explosives and chlorinated solvents in groundwater from the former Nebraska Ordnance Plant. Technical Report SERDP-97-3. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
- Fogler, H. S. 1999. *Elements of chemical reaction engineering, 3rd ed.* Upper Saddle River, NJ: Prentice Hall PTR.
- Freedman, D. L., and K. W. Sutherland. 1998. Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate reducing conditions. *Wat. Sci. Tech.* 38(7):33– 40.
- Gent, D. B. 2007. Electrolytic alkaline hydrolysis for in situ decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater. PhD diss., Northeastern University, Boston, MA.
- Gent, D. B., J. L. Johnson, D. R. Felt, G. O'Connor, and S. L. Larson. *Laboratory studies* and preliminary evaluation of destructive technologies for the removal of RDX from the water waste stream of Holston Army Ammunition Plant. In preparation. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Gilbert, D. M., and T. C. Sale. 2005. Sequential electrolytic oxidation and reduction of aqueous phase energetic compounds. *Env. Sci. Tech.* 39:9270–77.

- Heilmann, H. M., U. Weismann, and M. K. Stenstrom. 1996. Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon. *Environmental Science and Technology* 30:1485–92.
- Hoffsommer, J. C., D. A. Kubose, and D. J. Glover. 1977. Kinetic isotope effects and intermediate formation for the aqueous alkaline homogenous hydrolysis of 1,3,5triaza-1,3,5-tribitrocyclohexane (RDX). J. Phys. Chem. 81(5):380–385.
- Hundal, L. S., J. Singh, E. L. Bier, P. J. Shea, S. D. Comfort, and W. L. Powers. 1997. Removal of TNT and RDX from water and soil using iron metal. *Env. Poll.* 97(1-2):55–64.
- Hwang, S., D. R. Felt, E. J. Bouwer, M. C. Brooks, S. L. Larson, and J. L. Davis. 2006. Remediation of RDX-contaminated water using alkaline hydrolysis. *J Environ. Eng. ASCE* 132:256.
- Kawamura, S. 1991. *Integrated design of water treatment facilities*. New York: John Wiley and Sons.
- Kim, D., and T. J. Strathmann. 2007. Role of organically complexed iron(ii) species in the reductive transformation of RDX in anoxic environments. *Env. Sci. Tech.* 41:1257–64.
- Naja, G., A. Halasz, S. Thiboutot, G. Ampleman, J. Hawari. 2008. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles. *Env. Sci. Tech.* 42:4364–70.
- Neelavannan, M. G., M. Revathi, and C. Ahmed Basha. 2007. Photocatalytic and electrochemical combined treatment of textile wash water. *Journal of Hazardous Materials* 149:371–378.
- Newman, D. G. 1991. *Engineering economic analysis, 4th ed.* ISBN 0910554824. San Jose, CA: Engineering Press, Inc.
- Oh, B. T., C. L. Just, and P. J. J. Alvarez. 2001. Hexahydro-1,3,5-trinitro-1,3,5-triazine mineralization by zero-valent iron and mixed anaerobic cultures. *Env. Sci. Tech.* 35:4341–46.
- Office of Management and Budget (OMB). 2008. *Circular A-94 Revised.* Washington, DC: U.S. Office of Management and Budget.
- Park, J., S. D. Comfort, P. J. Shea, and T. A. Machacek. 2004. Remediating munitions contaminated soil with zerovalent iron and cationic surfactants. *J. of Env. Qual.* 33:1305–13.
- Pehkonen, S., D. Meenakshisundaram, M. Mehta, and S. W. Maloney. 1999. Electrochemical reduction of nitro-aromatic compounds: Product studies and mathematical modeling. CERL Technical Report 99/85. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Price, C. B., J. M. Brannon, S. L. Yost, and C. H. Hayes. 2001. Relationship between redox potential and pH on RDX transformation in soil-water slurries. *J. of Env. Eng.* 127(1):26–31.

- Rajkumar, D., and K. Palanivelu. 2004. Electrochemical treatment of industrial wastewater. *Journal of Hazardous materials* B113:123–129.
- Shrout, J. D., P. Larese-Casanova, M. M. Scherer, and P. J. Alvarez. 2005. Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zerovalent iron simulated barriers under different microbial conditions. *Env. Tech.* 26(10):1115–26.
- Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz. 1998. Analysis, synthesis, and design of chemical processes. ISBN 0135705657. Upper Saddle River, NJ: Prentice Hall.
- U.S. Army Center for Health Promotion and Preventive Medicine. 2005. *RDX treatment alternatives evaluation for industrial wastewater treatment plant.* 32-EE-04DG-05.
- U.S. Environmental Protection Agency (USEPA). 1998. *Test methods for evaluating solid waste, physical/chemical methods SW-846.* 3rd ed. Proposed Update IV. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
- U.S. Environmental Protection Agency (USEPA). 2004. 2004 Edition of the drinking water standards and health advisories. EPA 822-R-04-005. Washington, DC: Office of Water, U.S. Environmental Protection Agency.
- Wanaratna, P., C. Christodoulatos, and M. Sidhoum. 2006. Kinetics of RDX degradation by zero-valent iron (ZVI). *J. of Haz. Mat.* 136:68–74.
- Wani, A. H., B. R. O'Neal, D. M. Gilbert, D. B. Gent, and J. L. Davis. 2005. *Electrolytic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in aqueous solutions.* ERDC/EL TR-05-10. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Wani, A. H., and J. L. Davis. 2006. Biologically mediated reductive transformation of ordnance related compounds by mixed aquifer culture using acetate as the sole carbon source: Laboratory treatability studies for field demonstration. *Prac. Per.* of Haz., Tox., and Rad. Waste Mgt. 10:86–93.
- Wani, A. H., B. R. O'Neal, D. M. Gilbert, D. B. Gent, and J. L. Davis. 2006. Electrolytic transformation of ordnance related compounds (ORCs) in groundwater: Laboratory mass balance studies. *Chemosphere* 62(5):689–698.
- Wani, A. H., R. Wade, and J. L. Davis. 2007. Field demonstration of biologically active zone enhancement using acetate as a sole carbon source for in situ reductive transformation of RDX in groundwater. *Prac. Per. of Haz., Tox., and Rad. Waste Mgt.* 11:83–91.
- Wildmann, M. J., and P. J. J. Alvarez. 2001. RDX degradation using an integrated Fe(0)microbial treatment approach. *Water Sci. Tech.* 43(2):25–33.

Appendix A: Laboratory Pilot Data for Batch Alkaline Hydrolysis System

-				
		<u>Trial 1</u>		
Time	RDX	Calculated RDX	Calculated RDX	Diff ²
10	(mg/L)	When Filling (mg/L)	After Fill (mg/L)	Dill
11:00	7.238	7.238		0
11:10	3.895	4.181		0.0821
11:15	3.585	3.321		0.0697
11:20	2.583	2.708		0.0156
11:25	1.494		1.494	0
11:30	1.14		0.812	0.1077
11:45	0.457		0.130	0.1068
12:00	0.12		0.021	0.0098
12:30	n.a.			n.a.
13:00	n.a.			n.a.
13:30	n.a.			n.a.
14:00	n.a.			n.a.
15:00	n.a.			n.a.
			Sum of Diff ² :	0.3917
			k =	0.122

Table A1. Pilot data for semi-batch alkaline hydrolysisof RDX wastewater at pH 13.3.

Table A2. Pilot data for semi-batch alkaline hydrolysisof RDX wastewater at pH 3.1.

Time	RDX (ma/L)	<u>Trial 2</u> Calculated RDX When Filling (mg/L)	Calculated RDX After Fill (mg/L)	Diff ²
10:30	9.14			
10:40	7.075	7.388		0.098
10:45	6.798	6.682		0.013
10:50	6.175	6.068		0.011
10:55	5.864		5.864	34.386
11:00	5.097		4.701	25.979
11:15	3.845		2.423	14.784
11:30	2.379		1.249	5.660
12:00	1.226		0.332	1.503
12:30	0.629		0.088	0.396
13:00	0.404		0.023	0.163
13:30	0.161		0.006	0.026
14:30	0.013		0.000	0.000
			Sum of Diff ² =	83.02
			k =	0.0442

AlkalinityTitrations				Acid standardization			
0.1N HCI added	pH 1	pH 2	рН 3	Vol 50% NaOH	рН		V (L)
(µL)				(uL)		mol OH	
0	8.16	8.15	8.16	10	1.18	1.90E-04	0.0500
100	7.89	7.84	7.85	20	1.18	3.80E-04	0.0500
200	7.52	7.47	7.47	30	1.24	5.70E-04	0.0500
400	7.15	7.11	7.11	40	1.32	7.60E-04	0.0500
500	6.91	6.85	6.86	50	1.44	9.50E-04	0.0501
600	6.63	6.56	6.58	60	1.6	1.14E-03	0.0501
700	6.27	6.21	6.23	70	1.93	1.33E-03	0.0501
800	5.9	5.83	5.83	80	2.3	1.52E-03	0.0501
900	4.91	4.71	4.67	90	11.76	1.71E-03	0.0501
1000	4.61	4.37	4.35				
1100	4.32	4.13	4.11	Sta	ndardized	HCI (M) =	0.0322
1200	4.09	3.96	3.94				
				V =	50	mL	
	937.9	861.8	853.1	mv	vt NaOH =	39.9971 g	g/mol
				n	nwt H2O =	18.0153	g/mol
Total Alkalinity	6.05	5.56	5.50	509	% NaOH =	1520 0	j/L
				509	% NaOH =	19.00138 r	nol NaOH/L
Total alkalinity =	5.7	mg CaC	O₃/L	-			

Table A3. Total alkalinity titration data of HSAAP water.

Standard Method 2340B

Volume = 250 mL HSAAP water (Drum #5)
Appendix B: Laboratory Pilot Data for Rotating Electrode Batch Treatment System

Sample	Reaction	RDX	RDX C/C.
Campie	Timo	Conc	
	(min)		
Pup 1 10:40 15A	(mm)	(III <u>Q</u> /L) 20.827	1
Run 1 11:00 15A	20	15 120	0 726902
Run_1_11.00_15A	20	10.109	0.720093
Run_1_11:20_15A	40	11.081	0.560859
Run_1_11:40_15A	60	8.816	0.423297
Run_1_12:00_15A	80	6.557	0.314832
Run_1_12:25_15A_DUP	105	4.189	0.201133
Run_1_12:40_15A_DUP	120	3.496	0.167859
Run_1_13:10_15A	150	2.116	0.101599
Run_1_13:40_15A	180	1.34	0.06434
Run_1_14:40_15A	210	0.485	0.023287
Run_1_15:40_15A	240	0.191	0.009171
Initial sample_8:20_10:1	0	29.409	1
Run_2_8:40_15A	20	21.997	0.747968
Run_2_9:00_15A	40	16.752	0.569622
Run_2_9:20_15A	60	13.127	0.44636
Run_2_9:40_15A	80	10.138	0.344724
Run_2_10:00_15A	100	7.282	0.247611
Run_2_10:20_15A	120	5.867	0.199497
Run_2_10:50_15A	150	3.633	0.123534
Run_2_11:20_15A	180	1.833	0.062328
Run_2_11:50_15A	210	1.175	0.039954
Run_2_12:20_15A	240	0.511	0.017376
Run_2_13:20_15A	300 r	า.a.	
Run 2 14:20 15A	360 r	n.a.	

Table B1. Pilot data for rotating electrode batch reactor current density of 8.33 A/m².

Sample	Reaction	RDX	RDX C/C ₀
	Time	Conc	
	(min)	(mg/L)	
Initial sample_10:00_10:1	0	41.108	1.0000
Run_1_10:20_25A	20	27.479	0.6685
Run_1_10:40_25A	40	20.521	0.4992
Run_1_11:00_25A	60	12.865	0.3130
Run_1_11:20_25A	80	4.842	0.1178
Run_1_11:40_25A	100	3.673	0.0894
Run_1_12:00_25A	120	1.643	0.0400
Run_1_12:00_25A	120	3.824	0.0930
Run_1_12:30_25A	150	1.961	0.0477
Run_1_13:00_25A	180	1.137	0.0277
Run_1_13:30_25A	183	0.580	0.0141
Run_1_14:00_25A	240	0.287	0.0070
Run_1_14:30_25A	243	0.150	0.0036
Run_1_15:00_25A	300	0.061	0.0015
Run_1_16:00_25A	360	0.020	0.0005
Run_Initial_Sample_9:30	0	29.559	1.0000
Run 1_9:50_20A	20	18.999	0.6427
Run_1_10:10_20A	40	13.041	0.4412
Run 1_10:30_20A	60	8.933	0.3022
Run_1_10:50_20A	80	5.914	0.2001
Run 1_11:10_20A	100	3.937	0.1332
Run_1_11:30_20A	120	2.494	0.0844
Run 1_12:00_20A	150	1.68	0.0568
Run_1_12:30_20A	180	1.03	0.0348
Run 1_13:00_20A	210	1.179	0.0399
Run_1_13:30_20A	240	0.33	0.0112
Run_1_14:00_20A	270	0.199	0.0067
Run_1_14:30_20A	300	0.127	0.0043
Run_1_15:30_20A	330	0.063	0.0021

Table B2. Pilot data for rotating electrode batc	h
reactor current density of 11.45 A/m ² .	

Appendix C: Laboratory Pilot Data for Packed Electrode Flow Reactor Treatment System

Table C1. Pilot data for removal of RDX from a process waste stream by a packed electrode
flow reactor, flow condition #1.

-							
Γ	Q =	0.58	L/min				
	A =	4.05	m²				
	V =	11.62	L				
	V _{void} =	9.86	L				
l	Run Time	Influent RDX	Effluent RDX	Residence			
l	(min)	(mq/L)	(mg/L)	Time (min)	C/C ₀	k (min ⁻ ')	k _m (m/min)
	` O ´	17.806		. ,			
	20	20.628	1.637	17	0.0794	0.1490	0.0003627
	40	20.787	2.242	17	0.1079	0.1310	0.0003188
	60	20.741	2.061	17	0.0994	0.1358	0.0003305
	80	20.648	1.971	17	0.0955	0.1382	0.0003363
	100	20.735	1.975	17	0.0952	0.1383	0.0003366
	120	20.187	1.939	17	0.0961	0.1378	0.0003354
	140	19.769	1.941	17	0.0982	0.1365	0.0003322
	160	19.92	1.953	17	0.0980	0.1366	0.0003325
	180	19.948	1.977	17	0.0991	0.1360	0.0003309
	240	18.565	1.921	17	0.1035	0.1334	0.0003247
1	300	12.941	1.533	17	0.1185	0.1255	0.0003054
1	360	8.06	0.973	17	0.1207	0.1244	0.0003027

Table C2. Laboratory pilot data for removal of RDX from a process waste stream by a packed
electrode flow reactor, flow condition #2.

Q =	3.7	L/min				
A =	4.05	m²				
V =	11.62	L				
V _{void} =	10.18	L				
Run Time	Influent RDX	Effluent RDX	Residence Time		1 (1)	k (m/min)
(min)	(mg/L)	(mg/L)	(min)		K (min [*])	κ _m (Π/ΠΠ)
0	20.805		. ,			
10	19.39	1.178	2.75	0.0608		
20	1.85	1.136	2.75	0.6141	0.1773	0.0004453
30	1.684	1.118	2.75	0.6639	0.1490	0.0003741
40	1.55	1.025	2.75	0.6613	0.1504	0.0003777
50	1.43	0.917	2.75	0.6413	0.1616	0.0004058
60	1.27	0.802	2.75	0.6315	0.1672	0.0004198
80	1.111	0.689	2.75	0.6202	0.1737	0.0004363
100	0.888	0.619	2.75	0.6971	0.1312	0.0003295
120	0.729	0.451	2.75	0.6187	0.1746	0.0004385
150	0.594	0.387	2.75	0.6515	0.1558	0.0003913
180	0.51	0.337	2.75	0.6608	0.1507	0.0003784
210	0.396	0.281	2.75	0.7096	0.1247	0.0003133
240	0.294	0.223	2.75	0.7585	0.1005	0.0002524
280	0.22	0.135	2.75	0.6136	0.1776	0.0004460

Q =	4.9	L/min				
A =	4.05	m²				
V =	11.62	L				
V _{void} =	9.80	L				
4.9 L/min						
Run Time	Influent RDX	Effluent	Residence		L (k (m/min)
(min)	(mg/L)	RDX (mg/L)	Time (min)	C/C0	K (min)	κ _m (π/πη)
0	17.823					
5	5.477	3.967	2	0.7243	0.1613	0.0003901
10	5.911	2.433	2	0.4116	0.4438	0.0010736
15	5.708	3.362	2	0.5890	0.2647	0.0006402
20	5.131	3.202	2	0.6240	0.2358	0.0005703
25	5.196	2.978	2	0.5731	0.2783	0.0006732
45	4.25	2.445	2	0.5753	0.2764	0.0006686
60	3.723	2.177	2	0.5847	0.2683	0.0006489
75	2.884	1.841	2	0.6383	0.2244	0.0005429
90	2.662	1.635	2	0.6142	0.2437	0.0005895
105	2.427	1.36	2	0.5604	0.2896	0.0007004
120	2.192	1.235	2	0.5634	0.2869	0.0006939

Table C3. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #3.

Table C4. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #4.

Q =	1.55	L/min				
A =	4.05	m²				
V =	11.62	L				
V _{void} =	9.30	L				
Run Time	Influent	Effluent	Residence		L. (k (m/min)
(min)	RDX (mg/L)	RDX (mg/L)	Time (min)	0/00	K(min)	к _т (п/ппп)
	30.554					
20	35.358	10.548	6	0.29832004	0.2016	0.0004627
40	32.619	10.713	6	0.32842822	0.1856	0.0004260
60	29.912	9.605	6	0.32110859	0.1893	0.0004346
80	26.785	9.249	6	0.34530521	0.1772	0.0004068
100	23.037	8.218	6	0.35673048	0.1718	0.0003943
120	18.939	6.957	6	0.36733724	0.1669	0.0003831

Q =	1.04	L/min				
A =	4.05	m²				
V =	11.62	L				
$V_{void} =$	9.36	L				
Run Time	Influent RDX	Effluent	Residence		le (min ⁻¹)	k (m/min)
(min)	(mg/L)	RDX	Time (min)	0/00	к (тіп)	κ _m (Π/ΠΠΤ)
	17.059					
10	17.187	3.642	9	0.211904	0.1724	0.0003983
20	17.163	3.793	9	0.220999	0.1677	0.0003875
30	17.1	3.811	9	0.222865	0.1668	0.0003853
40	17.498	3.77	9	0.215453	0.1706	0.0003940
50	17.259	3.723	9	0.215714	0.1704	0.0003937
60	16.891	3.744	9	0.221657	0.1674	0.0003867
80	16.299	3.645	9	0.223633	0.1664	0.0003845
100	14.016	3.308	9	0.236016	0.1604	0.0003706
120	12.444	2.864	9	0.230151	0.1632	0.0003771

Table C5. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #5.

Table C6. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #6.

Q =	0.355	l/min				
A =	4.05	m²				
V =	11.62	L				
$V_{void} =$	9.59	L				
Run Time	Influent	Effluent	Residence	C/C.	$l_{\rm c}$ (min ⁻¹)	k m
(min)	RDX (mg/L)	RDX (mg/L)	Time (min)	0/00	к (тпп)	(m/min)
	9.509					
40	9.798	0.396	27	0.040416	0.1188	0.0002811
50	9.755	0.17	27	0.017427	0.1500	0.0003548
60	9.379	0.233	27	0.024843	0.1369	0.0003238
80	9.358	0.182	27	0.019449	0.1459	0.0003452
100	8.719	0.223	27	0.025576	0.1358	0.0003212
120	9.124	0.224	27	0.024551	0.1373	0.0003248
180	8.609	0.419	27	0.04867	0.1120	0.0002648
240	9.463	0.127	27	0.013421	0.1597	0.0003777
300	9.172	0.187	27	0.020388	0.1442	0.0003411
360	9.373	0.234	27	0.024965	0.1367	0.0003233

Current =	25	Α				
Q =	0.352	L/min				
A =	4.05	m²				
V =	11.62	L				
V _{void} =	9.50	L				
Run Time	Influent	Effluent	Residence			k _m
	RDX	RDX		C/C ₀	k (min ⁻¹)	
(min)	(mg/L)	(mg/L)	Time (min)			(m/min)
	32.022	1.178	27	0.036787	0.1223	0.0002869
	34.467	1.399	27	0.04059	0.1187	0.0002784
	33.977	1.381	27	0.040645	0.1186	0.0002783

Table C7. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #7.

Table C8. Laboratory pilot data for removal of RDX from a process waste stream by a packed electrode flow reactor, flow condition #8.

Current =	35	А				
Q =	0.352	L/min				
A =	4.05	m²				
V =	11.62	L				
$V_{void} =$	9.50	L				
Run Time	Influent RDX	Effluent RDX	Residence	C/C ₀	k (min ⁻¹)	k _m
(min)	(mg/L)	(mg/L)	Time (min)	·	,	(m/min)
	33.354	0.936	27	0.028063	0.1323	0.0003104
	36.162	0.854	27	0.023616	0.1387	0.0003254
	36.721	0.808	27	0.022004	0.1414	0.0003316
	28.69	0.726	27	0.025305	0.1362	0.0003194

Appendix D: Supporting Information from Technology Development Process

Establishment of Technical IPT Meeting Minutes

Representatives from ERDC, PM – Joint Services, BAE Systems, the National Defense Center for Environmental Excellence, Stevens Institute of Technology, and Holston Army Ammunition Plant (HSAAP) met 15-16 August 2007 to discuss a path forward on RDX releases to the Holston River. Attendees were as follows:

Attendee	Organization	Email		
Bob Winstead	BAE Systems	Bob.winstead@baesystems.com		
Pam Wigle	HSAAP	Pam.wigle@us.army.mil		
Donald Yee	PM-JS	Donald.w.yee@us.army.mil		
Greg O'Connor	PM-JS	goconnor@pica.army.mil		
Jared Johnson	USACE-ERDC	Jared.l.johnson@us.army.mil		
Deborah Felt	USACE-ERDC	Deborah.felt@erdc.usace.army.mil		
David Gent	USACE-ERDC	David.b.gent@erdc.usace.army.mil		
Scott Shelton	HSAAP	Hubert.scott.shelton@us.army.mil		
Todd Hayes	BAE Systems	Todd.hayes@baesystems.com		
Jason Spears	BAE Systems	Jason.spears@baesystems.com		
Janice Lyles	BAE Systems	Janice.lyles@baesystems.com		
Donald W. Moore	PM-JS	dwmoore@pica.army.mil		
Michael B. Mills	HSAAP	Michael.b.mills@us.army.mil		
Steve Larson	USACE-ERDC	Steven.I.larson@us.army.mil		
Paul Brezovec	NDCEE/Concurrent	brezovec@ctc.com		
	Technologies			
Washington Braida	Stevens Inst Tech	wbraida@stevens.edu		
Mark Marshall	BAE Systems	Mark.marshall@baesystems.com		
Larry Pierce	BAE Systems	Larry.pierce@baesystems.com		

Dr. Donald Yee gave an initial presentation to summarize events to date, as follows.

- 1. During 2008, a drinking water intake for the town of Church Hill, TN, will be built 5 miles downstream of the HSAAP industrial treatment plant outflow.
- 2. A draft permit has been issued with a 3-year compliance schedule. HSAAP and BAE are working to keep a 5-year compliance schedule, and will need to provide justification to the Tennessee Dept of Environmental Compliance (TDEC) nlt 24 Aug.
- 3. RDX concentrations at Morristown, TN (50 river miles downstream) are just a shade below health advisory levels (2 ppb).
- 4. The goal of this meeting is to set up technical and project management IPTs to provide recommendations on a path forward for keeping HSAAP in RDX discharge compliance.
- 5. The state of TN is asking for RDX levels below 2 ppb 7 miles downstream of outfall
 - a. RDX is ~1 ppb 97 river miles downstream at the head of Cherokee dam
 - b. RDX is ~1 ppb 141 river miles downstream at the headwaters of the Tennessee River
 - c. Low flow in the Holston River (30Q5) is estimated at 780 MGD
 - d. The estimated TMDL will be ${\sim}280$ ppb at the outfall, ${\sim}100$ lbs/d
- 6. Pump and treat is being used at Milan AAP (groundwater, using GAC)
- 7. RDX is a batch process
- 8. Wastewater from each building flows through a catch basin
 - a. Catch basins are ~3'x6' concrete basins with wooden baffles for settling
 - b. Product is periodically removed from the basins and burned
 - c. Flow through the basins during production is normally 10-30 thousand G/d
 - d. Each building sits on a concrete apron. Stormwater from each building and apron flows through the catch basin
 - e. All wastewater goes through the industrial treatment plant
 - f. Total treatment plant flow averages 3.5 MGD (7.5 MGD during a storm)

ERDC presented available technologies for the treatment of RDX wastewater. Discussion notes are as follows:

- 1. What about safety issues?
 - a. Dr. Yee We expect ERDC to work closely with HSAAP safety office for technical validation
 - b. Mike Mills Remember that the water may have solids. Some contractors use improper bolts/grounding

- 2. Dr. Braida What about the low pH or producing flammable gases through electrolysis?
 - a. Electrochemical treatment will neutralize the waste stream
 - b. H_2 and O_2 are low efficiency products. We do not anticipate a serious buildup
- 3. M. Mills Make sure that you evaluate process upsets: startup, concentration spikes, pH spikes.
- 4. Bob Winstead We need to evaluate things like freeze protection early in the process. There may be solids in the waste stream.
 - a. Dr. Gent This type of destructive technology is envisioned for post solids removal
- 5. What will the effect be on the wastewater treatment plant?
- 6. Bob Winstead I am more attracted to the idea of having smaller skid or trailer-mounted units that can be moved to wherever the RDX is.
- 7. Dr. Kim We have observed higher efficiencies [than those of the electro-iron column] with our zvi
- 8. Todd Hayes What is your projected timeline for providing us with a technology?
 - a. Dr. Larson I would like data from the bench scale for consideration by the technical IPT downselect and do data gap analysis in 6 months.
- 9. Dr. Yee Toele has sequencing batch reactors for caustic destruction of energetics
 - a. Todd Hayes that's where we've seen nitrosamine production. Be sure to do a cost estimate based on our own site water.
- 10. Dr. Kim The base hydrolysis option seems like a lot of high pH water sitting around as a potential hazardous waste
 - a. Mike Mills this is just brainstorming, we will go over pros and cons once the data is in
- 11. Bob Winstead the passive base treatment reminds me of an anoxic limestone trench treatment for acid mine drainage.
- 12. Dr Yee Can you do all of this with the money you have?
 - a. Dr. Larson Some of this work is already set up and ready to go with bench testing. Some of the technologies will be discarded early in the process.
- 13. Dr. Kim We have been working with passive zvi treatment for 10 years. The pilot plant at HSAAP has not worked. Remember that RDX treatment has to be reductive, then oxidative. I will provide data to and support Dr. Larson's technical IPT.
- 14. Dr. Yee we would like to include Dr. Steve Maloney's fluidized bed bioreactor in the technical selection process.
 - a. McAlister AAP is using this. They have built a retention pond in order to ensure steady flow

- 15. Dr. Kim I have tried filtration for RDX, and it does not work well. We have installed a slinky filter at Iowa AAP. Any proposed technology must not contain moving parts.
- 16. Dr. Larson We would like to come again and do a stream characterization for particle sizing, etc.
 - a. Early September
 - b. Debbie will coordinate

Three more items to finish the meeting:

- 1. A technical IPT will take the lead on technology downselect
 - a. Steve Larson will lead the ERDC element
 - b. Dr. Braida will be the Stevens POC
 - c. Bob Winstead will represent HSAAP/BAE with additional representatives from the safety and process engineering elements
 - d. Paul Brezovec from NDCEE
- 2. A program management IPT will direct the process
 - a. Don Yee, Todd Hayes, Pam Wigle, and others
- 3. Action items
 - a. Input to support HSAAP's response to TDEC
 - i. ERDC will provide project timeline by 20Aug
 - More detail is needed to justify a 5-year compliance schedule and increase of load above 100 lb/d (2.1-2.5 ppm)
 - b. DOSC contract vehicle to keep BAE's end moving i. PM-JS/BAE will work it out
 - c. Budgeting request
 - i. All Don Yee needs to be prepared for the FY08 money
 - d. Meeting minutes
 - i. Don Yee will distribute draft copy on 20 August 2007
 - e. IPT Charters
 - i. Don Yee will distribute draft copy on 20 August 2007
 - f. Technical evaluation parameters
 - i. Don Yee will distribute draft copy on 20 August 2007
 - g. Onsite data collection
 - i. ERDC will provide sampling plan for consideration by HSAAP nlt 1Sep
 - ii. Trip in the first 2 weeks of September
 - h. Quarterly management review
 - i. 15Nov

- i. Mass loading performance parameters
 - i. 8 Buildings at ~20000 gpd
 - ii. Currently seeing 60-70% treatment at WWTP
 - iii. ERDC/BAE will work to set goals
 - 1. ERDC will target treatment to 100 ppb
 - iv. CHPPM has a good report on data collection
- j. Technical team meeting in Vicksburg
 - i. Oct 2007
- k. Project status review and technical downselect February 2008

Progress Report Slides of 24-Sep-2007

- Alkaline hydrolysis batch studies completed
 - Kinetic rate parameters have been determined using HSAAP site water.
 - Further analysis required to design treatment systems including sequential batch, complete mix, plug flow systems
- Electrolytic batch testing in progress
- Ultra Violet (UV) Literature being assessed
 - Beginning experimental design including equipment and supplies
 - We have reactors and lamps
- Filtration testing set for 01 October at HSAAP

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 24-September-2007

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 24-September-2007

3.14

13.3

200

Base Hydrolysis Batch Experiments

Estimated treatment times based on observed kinetics

pH Hydroxide Concentration (mM)		Initial RDX Concentration, C ₀ (mg/L)	Half Life (hr)	Time to 99% Removal (hr)	
12.0	10	9.63	4.4	29.5	
12.5	32	8.91	1.4	9.1	
13.0	100	6.85	0.4	2.9	
13.3	200	6.09	0.2	1.5	

Rough operating cost estimate based on NaOH addition and observed kinetics

Flow (gal/day)		10,000			40,000		
pН	[OH-] (mmel)	NaOH required (Ibs/day)	Time to Treat (hr)	Cost (\$/day)	NaOH required (lbs/day)	Time to Treat (hr)	Cost to treat (\$/day)
12	10	67	30	15	267	38	59
12.5	32	211	9	46	845	12	186
13	100	668	3	147	2,671	4	588
13.3	200	1,332	1	293	5,330	2	1,173

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 24-September-2007

Progress Report Slides of 17-Oct-2007

RDX in Wastewater Destruction Technologies-ERDC Work

Alkaline hydrolysis batch studies – completed

- Kinetic rate parameters have been determined using HSAAP site water.
- Further analysis required to design treatment systems including sequential batch, complete mix, plug flow systems
- Electrolytic batch testing in progress
- Ultra Violet (UV) in progress
- Solids Balance Sampling performed 2-3 Oct at HSAAP. Sample analysis in progress.

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

Base Hydrolysis Batch Experiments

- Reactions were run in triplicate at pH 12.0, 12.5, 13.0, and 13.3
- Increasing pH results in faster reaction rates and shorter treatment times

pH Hydroxide Concentration (mM)		Initial RDX Concentration, C ₀ (mg/L)	1 st Order Kinetic Rate Constant, k (hr ⁻¹)	Standard Error of k (hr -1)	
12.0	10	9.63	0.156	0.012	
12.5	32	8.91	0.504	0.060	
13.0 100		6.85	1.61	0.03	
13.3	200	6.09	3.14	0.05	

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

ERD

Base Hydrolysis Batch Experiments

Estimated treatment times based on observed kinetics

pH Hydroxide Concentration (mM)		Initial RDX Concentration, C ₀ (mg/L)	Half Life (hr)	Time to 99% Removal (hr)	
12.0	10	9.63	4.4	29.5	
12.5	32	8.91	1.4	9.1	
13.0	100	6.85	0.4	2.9	
13.3	200	6.09	0.2	1.5	

Rough NaOH cost based on observed kinetics

Flow (gal/day)		10,000		40,000			
рН	[OH-] (mmel)	NaOH required (Ibs/day)	Time to Treat (hr)	Cost (\$/day)	NaOH required (Ibs/day)	Time to Treat (hr)	Cost to treat (\$/day)
12	10	67	30	15	267	38	59
12.5	32	211	9	46	845	12	186
13	100	668	3	147	2,671	4	588
13.3	200	1,332	1	293	5,330	2	1,173
aOH (50%	b) cost 23 SEP	2007 (\$/lb)	0.22	12 July 1	1 16 A 3	Sec. 2.	1000

*CHPPM Has estimated \$411-\$849 per day for GAC technologies (exclusive of capitalization or costs associated with non-regenerable GAC).

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

Electrochemical Batch Experiments

- Reactions have been run at two electrode surface areas with two current densities
- Work continuing to determine optimal current density

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

ERDO

Electrochemical Batch Experiments

Current Electrode Density surface (A/m ²) area (cm ²)		Initial RDX Concentration, C ₀ (mg/L)	1 st Order Kinetic Rate Constant, k (hr -1)	Standard Error of k (hr -1)	
7.2	28	9.19	0.36	0.01	
18	28	8.08	0.29	0.02	
6	175	9.04	1.22	0.05	
15	175	8.63	1.56	0.07	

- Surface area proves to be the most important limiting factor i.e. mass transfer control occurs at lower current densities
 - This implies that we can achieve optimum current density, at which point the only limiting factor is available surface area
- Rate constant approaching that of base hydrolysis at pH 13. Nonchemical technology is advantageous as it avoids logistics like chemical delivery and waste issues

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

UV Batch Experiments

 Ultraviolet reaction system assembled and operating. Initial data is being analyzed.

UV Reactor: 450 Watt Med Pressure Lamp

System Design Equation:

$$C = C_{0} \exp\left[-\frac{k}{1+k\tau_{r}}\frac{\tau_{r}}{\tau_{t}}t\right]$$

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

- Solids balance sampling completed 2-3 October
- Initial results being analyzed

Results shown indicate that RDX is solubilizing in the catch basin and adding mass to the wastewater stream.

Location	Initial RDX Concentration (mg/L)
Building G-4 Recrystallization "Recycle" at 35° C	456
Building G-4 Recrystallization "Recycle" at 21° C	392.8
Building G-4 Entering catch basin	0.2
Building G-4 Exiting catch basin	17.2
Building G-7 Process line from dewatering to settling tank	128.2
Building G-7 Entering catch basin	24.2
Building G-7 Exiting catch basin	45.2

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

Progress Report Slides of 24-Oct-2007

- Alkaline hydrolysis batch studies completed
 - Kinetic rate parameters have been determined using HSAAP site water.
 - Further analysis required to design treatment systems including sequential batch, complete mix, plug flow systems
- Electrolytic batch testing in progress
- Ultra Violet (UV) in progress
- Solids Balance Sampling performed 2-3 Oct at HSAAP. Sample analysis in progress.

- Reactions were run in triplicate at pH 12.0, 12.5, 13.0, and 13.3
- Increasing pH results in faster reaction rates and shorter treatment times

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 17-October-2007

Technology Review and Evaluation Meeting 28-Nov-2007

Agenda

Agenda for Technology Review and Evaluation Hazardous Waste Research Center ERDC-EL Wednesday 28 November 2007

8:30 to 9:00 Arrive at ERDC, Vicksburg and transfer to HWRC

(Lunch orders will be taken at this time.)

- 9:00-9:15 Introduction of ERDC-EL, EP-E Management
- 9:30-9:35 Opening Remarks

Mr. Greg O'Connor, ARDEC

9:35-9:45 Break

9:45 - 10:00	Regulatory Environment/	Fime Frame I	HSAAP and/or BAE
10:00-10:30	"Quick Fix" solutions	discussion	Mr. Don Yee
10:30-11:00	Alkaline hydrolysis		Dr. David Gent, ERDC-EL
11:00-11:30	Electrochemical treatment		Mr. Jared Johnson, ERDC-EL
11:30-12:00	Bimetallic Catalysis & GAC	Enhanced Su	llfide Reduction Dr. Braida, Stevens Institute
12:00-13:00	Lunch		
13:00-13:30	Filtration techniques		Mr. Paul Brezovec, NDCEE
13:30-14:00	ZVI		Dr. Byung Kim, ERDC-CERL
14:00-14:30	Fluidized bed reactors		Dr. Steven Maloney, ERDC-CERL
14:00-15:00	Group discussion		All
15:00-15:15	Break		
15:15-16:15	Technology Down-select C	riteria	All

E SYSTEMS DCEE **Alkaline Hydrolysis** Holston Environmenta Partnersh Technology David B. Gent, PhD US Army Engineer Research and Development Center Vicksburg, MS STEVENS ERDC Technology Review and Evaluation, 28-November-2007, Vicksburg, MS **Conceptual Model** Alkaline conditions decompose RDX by adding AE SYSTEMS electrons to the electron orbitals, destabilizing the *NDCEE* molecule and inducing reductive ring cleavage of RDX Proposed RDX decomposition pathway by alkaline hydrolysis Holston Environmenta (adapted from Balakrishnan et al., 2003) Technology Partnershi Aqueous end products: formate · formaldyhyde, RDX 3,5-dinitro-1,3,5-triaza-1-ene nitrite NO Canizarro C.-NNO OH HCOO: + NH NO2 NO, 4,6-dinitro-2.4.6-triaza-hexanal STEVENS C-NNO. ---Balakrishnan, V.K., Halasz, A., Hawari, J. (2003), NO. "Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX and CL20: New insights into degradation 5-hydroxy-4-nitro-2,4-diaza-pentanal 4-NDAB ERDC

pathways obtained by the observation of novel intermediates," Environ. Sci. Technol., 37, 1838-1843.

Technology Review and Evaluation, 28-November-2007, Vicksburg, MS

Alkaline Hydrolysis Presentation

Technology Review and Evaluation, 28-November-2007, Vicksburg, MS

BAE SYSTEMS

Base Hydrolysis Batch Experiments

рН	Hydroxide Concentration (mM)	Initial RDX Concentration, C ₀ (mg/L)	Half Life (hr)	Time to 99% Removal (hr)
12.0	10	9.63	4.4	29.5
12.5	32	8.91	1.4	9.1
13.0	100	6.85	0.4	2.9
13.3	200	6.09	0.2	1.5

Rough NaOH cost based on observed kinetics

Flow	gal/day)	10,000			40,000		
рН	[OH-] (mmol)	NaOH required (Ibs/day)	Time to Treat (hr)	Cost (\$/day)	NaOH required (lbs/day)	Time to Treat (hr)	Cost to treat (\$/day)
12	10	67	30	15	267	38	59
12.5	32	211	9	46	845	12	186
13	100	668	3	147	2,671	4	588
13.3	200	1,332	1	293	5,330	2	1,173

NaOH (50%) cost 23 SEP 2007 (\$/lb) 0.22

Holston Environmenta

Techn

Technology Review and Evaluation, 28-November-2007, Vicksburg, MS

OTSIEMS	Acid Neutralization		Recarbonation	
EE inter Frederingen and Excellence	• HCI • H ₂ SO ₄		• CO ₂ • Air	
<u>e</u> '				
ē l	Acetic ac			
	• HSAAP :	acid was	ste	
0				
chin	Rough dai	ly neutr	alization	cost
5				
VENS	Flow	HCI ©/day	H ₂ SO ₄	
f Technology		- 140	- 3/Uay	Air and CO ₂ cost
	20,000	280	193	unknown at this time
	30,000	421	290	
NDC	40,000	561	387	
10 09/15.C	Technology D	winw and Evalu	tion 20 November	2007 Viakabura MS
	rechnology Re	wewanu Evalu	anon, 20-ivovenibei	-2007, Vicksburg, INS
	-	bilot	Docid	OIC
nt Services		101	near	J II
	Sequencia	na Dat	ch Poar	tore (SRDe)

Electrochemical Destruction Presentation

Technology Review and Evaluation, 28-November-2007, Vicksburg, MS

Technology Review and Evaluation, 28-November-2007, Vicksburg, MS

Ultraviolet Destruction Presentation

Progress Report 27-Feb-2008

RDX in Wastewater Destruction Technologies-ERDC Work

- Alkaline Hydrolysis Completed
- Electrochemical
 - Batch Completed
 - Bench-top Pilot Continuing to assess design criteria for SBR pilot operation
 - Small Pilot Constructing reactors
- Waste Stream Further Characterization
 - Beginning coordination work

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 28-February-2008

Rotating electrode design improves mass transfer, increasing the attainable reaction rate

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 28-February-2008

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 28-February-2008

Flow Reactor P	ilot D	esia
ERDC	126.2	
ofile		
side Area Electrode Array		
Rectangular channel desig	In	
20 Sheets of 6x48" Materia	al	
48.46 ft ² of reactive surface	e area	
	C ₀ (mg/L) C (mg/L)
	50	
Fundational Proceeding in the		0.091
Expected Reactivity	40	0.091 0.073
Expected Reactivity Q = 0.526 L/min		0.091 0.073 0.055
Expected Reactivity Q = 0.526 L/min A = 4.5 m ³ k = 0.00074 + 0.00003 m/min	+ 40 30 20	0.091 0.073 0.055 0.036
Expected Reactivity Q = 0.526 L/min A = 4.5 m ^a k _m = 0.00074 ± 0.00003 m/min	40 30 20 10	0.091 0.073 0.055 0.036 0.018

Evaluation of Potential Technologies for Treatment of Wastewater from Holston Army Ammunition Plant Progress Report 28-February-2008

Progress Report 21-May-2008

ERDC

Flow through electrochemical lab pilot

System up and running

- Electrode area: 4.1 m²
- Current Density: 3.7 A/m²
- Observed k_m: 0.00026 m/min

System works - 90% reduction from 6.5 mg/L in the Holston water reduced to 0.6 mg/L with a flow rate of 220 gpd

Current Work:

- Bringing current density up to increase destruction
- Implementing polarity switching Progress Report 21-May-2008

In-line base addition fitted to 30 gallon tank

System will be used with Holston water for pilot sizing starting this week.

Identical 30 gallon tank being fitted for electrochemical batch testing

ERDC

Progress Report 21-May-2008

Progress Report 11-Jun-2008

Flow through electrochemical lab pilot

System up and running

- Electrode area: 4.1 m²
- Current Density: 3.7 A/m²
- Observed k_m: 0.00026 m/min

System works - 90% reduction from 6.5 mg/L in the Holston water reduced to 0.6 mg/L with a flow rate of 220 gpd

Current Work:

- Bringing current density up to

increase destruction

- Implementing polarity switching Progress Report 21-May-2008

Flow Electrochemical Reactor

In-line base addition fitted to 30 gallon tank

System will be used with Holston water for pilot sizing starting this week.

Identical 30 gallon tank being fitted for electrochemical batch testing

Progress Report 21-May-2008

Electrochemical Batch Lab Pilot

, Rate (min⁻¹) 80'0 Small Batch Bype fine it

Better mass transfer in this design allows for operation at higher current density with shorter treatment times

F

Electrode - Impellers 8 Sheets of 15x122 cm Electrode Material 1.8 m² of reactive surface area

Technology Review and Evaluation Meeting 24-Jun-2008

Agenda

Agenda RDX Wastewater Technology Review Meeting 24 June 2008

0800 Arrive at ERDC 0830 Welcome and Introductions - Don Yee 0840 Walk through of laboratory 0900 Electrochemical Flow Through Reactor - Jared Johnson 0930 Electrochemical Stirred Tank Reactor - David Gent 1000 Break 1015 Upflow Anaerobic Bioreactor - Steve Maloney 1045 Alkaline Stirred Tank Reactor - David Gent 1115 Results of on site sampling at HSAAP - Jared Johnson 1145 Lunch 1245 Holston River hydrology overview - SAIC (callin)/Don Yee 1315 Catch basin flow rates and best practices for RDX mitigation - Larry Reynolds 1415 RDX Phase II Scope - Don Yee 1445 Break 1500 Discussion of issues and future scheduling - all 1600 Adjourn

E SYSTEMS DCEE **Alkaline Hydrolysis** Holston Environmental Technology Partnersh David B. Gent, PhD US Army Engineer Research and Development Center Vicksburg, MS STEVENS ----ERDC Technology Review and Evaluation, 24-June-2008, Vicksburg, MS **Conceptual Model** Alkaline conditions decompose RDX by adding AE SYSTEMS electrons to the electron orbitals, destabilizing the NDCEE molecule and inducing reductive ring cleavage of RDX Proposed RDX decomposition pathway by alkaline hydrolysis Holston Environmental Technology Partnership (adapted from Balakrishnan et al., 2003) Aqueous end products: formate · formaldyhyde, RDX 3,5-dinitro-1,3,5-triaza-1-ene nitrite Canizarro C.-NNC OH HCOO + NH NO. NO. 4,6-dinitro-

Alkaline Hydrolysis Presentation

2.4.6-triaza-hexanal

5-hydroxy-4-nitro-2,4-diaza-pentanal C-NNO

4-NDAB

Technology Review and Evaluation, 24-June-2008, Vicksburg, MS

Balakrishnan, V.K., Halasz, A., Hawari, J. (2003), "Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX and CL20: New insights into degradation

pathways obtained by the observation of novel intermediates," Environ. Sci. Technol., 37, 1838-1843.

STEVENS

ERDC

Technology Review and Evaluation, 24-June-2008, Vicksburg, MS

Base Hydrolysis Batch Results

Estimated treatment times based on observed kinetics

рН	Hydroxide Concentration (mM)	Initial RDX Concentration, C ₀ (mg/L)	Half Life (hr)	Time to 99% Removal (hr)
12.0	10	9.63	4.4	29.5
12.5	32	8.91	1.4	9.1
13.0	100	6.85	0.4	2.9
13.3	200	6.09	0.2	1.5

Sum	atch R mary	eactor 8	Flow-	Through atment	Reactors
Flo	N I	VaOH	HCI	H ₂ SO ₄	
gal/d	ay	\$/day 3	6/day	\$/day	
10,0	00	147	140	97	
20,0	00	294	280	193	
		111	421	200	
30,0	J0	441	74 1	230	
30,0 40,0 Estima cos	ted Tre t base	588 batment a d on obs	561 Ind Neu erved ki	387 tralization	i -
30,0 40,0 Estima cos	ted Tro	588 eatment a d on obs eatment NaOH	561 and Neur erved ki Neutr H	387 tralization netics ralization 2SO4	
30,0 40,0 Estima cos Flow gal/day	ted Tre tbase Tre \$/day	588 eatment a d on obs eatment NaOH \$/year	561 erved ki Neutr H \$/day	387 tralization netics ralization 2SO4 \$/year	
30,0 40,0 Estima cos Flow gal/day 10,000	ted Tre t base Tre \$/day 147	588 eatment a d on obs eatment NaOH \$/year 53,610	561 erved ki Neutr H \$/day 97	387 tralization netics ralization 2SO4 \$/year 35,283	
30,0 40,0 Estima cos Flow gal/day 10,000 40,000	50 50 50 51 53 57 588 57 588 57 588 57 588	588 eatment a d on obs eatment vaOH \$/year 53,610 214,441	561 nd Neur erved ki Neutr H \$/day 97 387	387 tralization netics alization 2SO4 \$/year 35,283 141,130	Treatment cost based on
30,0 40,0 Estima cos Flow gal/day 10,000 40,000 50,000	50 ted Tre t base Tre 147 588 734	588 eatment a d on obs eatment vaOH \$/year 53,610 214,441 268,051	561 nd Neur erved ki Neutr H \$/day 97 387 483 772	230 387 tralization netics alization 2SO4 \$/year 35,283 141,130 176,413 202,262	Treatment cost based on - HCI - \$0.17 per lb
30,0 40,0 Estima cos Flow gal/day 10,000 40,000 50,000 80,000	50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51	588 eatment a d on obs eatment NaOH \$/year 53,610 214,441 268,051 4.032.202	561 md Neur erved ki Neutr H \$/day 97 387 483 773 483	230 387 tralization netics alization 2SO4 \$/year 35,283 141,130 176,413 282,260	Treatment cost based on - HCI - \$0.17 per lb - H ₂ SO ₄ - \$0.15 per lb

Single 40000 gpd demonstration unit capital and operating costs

	Year	Capit	al Costs	Ор	erating Costs	Total	Discount	Ne	t Present Cost
VDCEE Internet Defense Context For Epicture associated Excellence	1	\$ 1,96	6,000.00	\$	355,571.00	\$ 2,321,571.00	1.000	\$	2,321,571.00
	2	\$	1. A.	\$	355,571.00	\$ 2,677,142.00	1.022	\$	2,736,039.12
	3	\$		\$	355,571.00	\$ 3,032,713.00	1.022	\$	3,099,432.69
• 5 2 •	4	\$		\$	355,571.00	\$ 3,388,284.00	1.022	\$	3,462,826.25
	5	\$	14 A 1	\$	355,571.00	\$ 3,743,855.00	1.022	\$	3,826,219.81
	6	\$	14	\$	355,571.00	\$ 4,099,426.00	1.022	\$	4,189,613.37
	7	S	1.1	\$	355,571.00	\$ 4,454,997.00	1.022	\$	4,553,006.93
59	8	\$	100	\$	355,571.00	\$ 4,810,568.00	1.022	\$	4,916,400.50
5 2 .	9	\$	lies 1	\$	355,571.00	\$ 5,166,139.00	1.022	\$	5,279,794.06
2 5	10	\$	-	\$	355,571.00	\$ 5,521,710.00	1.022	\$	5,643,187.62
	11	\$	-	\$	355,571.00	\$ 5,877,281.00	1.022	\$	6,006,581.18
3.5	12	\$		\$	355,571.00	\$ 6,232,852.00	1.022	\$	6,369,974.74
	13	\$		\$	355,571.00	\$ 6,588,423.00	1.022	\$	6,733,368.31
TEVENS	14	\$		\$	355,571.00	\$ 6,943,994.00	1.022	\$	7,096,761.87
LUX LING	15	S	-	\$	355,571.00	\$ 7,299,565.00	1.022	\$	7,460,155.43
	16	\$	ter 1	\$	355,571.00	\$ 7,655,136.00	1.022	\$	7,823,548.99
000	17	\$		\$	355,571.00	\$ 8,010,707.00	1.022	\$	8,186,942.55
Contraction of the second	18	S	1.1	\$	355,571.00	\$ 8,366,278.00	1.022	\$	8,550,336.12
THAT	19	\$	1.4	\$	355,571.00	\$ 8,721,849.00	1.022	\$	8,913,729.68
1.1.1211 B	20	s		s	355 571 00	\$ 9 077 420 00	1 022	s	9 277 123 24

Packed Electrode Flow Reactor Presentation

STEVENS

ERDC

Current	Current	Residence	k _m	%
(A)	Density (A/m ²)	Time (min)	(m/min)	Destruction
1.5	6.96	13	0.000737	71.11%
1.75	8.12	13	0.000702	69.38%
2	9.28	13	0.000609	64.15%
2.5	11.60	13	0.000666	67.43%

AE SYSTEMS

....

NDCEE

Holston Environmenta Partnerd

Abo

Tech

STEVENS

ERDC

Cost	nformatio	on
		62 - 14 C 14 C.

Electrode Panels =	at or y i	18
Cost per panel =	\$	135.00
Electrode Cost =	\$	2,430.00
Pump Cost =	\$	200.00
Housing Cost =	\$	1,000.00
Power Supply =	\$	5,000.00
Total Cost =	\$	8,765.00

Estimate of capital costs **Upper Estimate, Without Economy of Scale**

Capacity (gpd)	Capital Cost			
10000	\$ 476,327.33			
40000	\$ 1,905,309.32			
400000	\$ 19,053,093.23			

Estimate of operating costs Energy cost basis of \$ 0.10 per kW-hr as upper limit

Capacity (gpd)	Power consumption (kW-hr/d)	1	Cost/d	Cost/yr
135	1.12	\$	0.11	\$ 40.88
10000	83	\$	8.30	\$ 3,028.15
40000	332	\$	33.19	\$ 12,112.59
400000	3319	\$	331.85	\$ 121,125.93

Technology Review and Evaluation, 24-June-2008, Vicksburg, MS

Cost Information

Holston Environmenta ------

Techi

STEVENS

ERDC

BAE SYSTEMS Single 40,000 gpd demonstration unit capital and operating costs

Year	C	apital Costs	Оре	erating Costs	Total	Discount	Net Present Cost	
0	\$	1,905,309.32	\$	12,112.59	\$ 1,917,421.92	1.000	\$	1,917,421.92
1	\$	-	\$	12,112.59	\$ 1,929,534.51	1.022	\$	1,971,984.27
2	\$	-	\$	12,112.59	\$ 1,941,647.10	1.044	\$	2,028,019.33
3	\$	1. A. A.	\$	12,112.59	\$ 1,953,759.69	1.067	\$	2,085,565.50
4	\$	720,000.00	\$	12,112.59	\$ 2,685,872.29	1.091	\$	2,930,143.85
5	\$	-	\$	12,112.59	\$ 2,697,984.88	1.115	\$	3,008,111.92
6	\$	-	\$	12,112.59	\$ 2,710,097.47	1.139	\$	3,088,092.39
7	\$		\$	12,112.59	\$ 2,722,210.06	1.165	\$	3,170,136.09
8	\$	-	\$	12,112.59	\$ 2,734,322.66	1.190	\$	3,254,295.06
9	\$	720,000.00	\$	12,112.59	\$ 3,466,435.25	1.216	\$	4,216,393.69
10	\$	-	\$	12,112.59	\$ 3,478,547.84	1.243	\$	4,324,211.61
11	\$	-	\$	12,112.59	\$3,490,660.43	1.270	\$	4,434,732.79
12	\$	-	\$	12,112.59	\$ 3,502,773.03	1.298	\$	4,548,023.98
13	\$	-	\$	12,112.59	\$ 3,514,885.62	1.327	\$	4,664,153.58
14	\$	720,000.00	\$	12,112.59	\$ 4,246,998.21	1,356	\$	5,759,630.45
15	\$	-	\$	12,112.59	\$ 4,259,110.80	1.386	\$	5,903,130.38
16	\$	-	\$	12,112.59	\$4,271,223.40	1.416	\$	6,050,156.65
17	\$	-	\$	12,112.59	\$ 4,283,335.99	1.448	\$	6,200,794.96
18	\$	-	\$	12,112.59	\$ 4,295,448.58	1.480	\$	6,355,133.08
19	\$	720,000.00	\$	12,112.59	\$ 5,027,561.17	1.512	\$	7,601,939.06
20	\$		\$	12,112.59	\$ 5,039,673.77	1.545	\$	7,787,899.53

Rotating Electrode Batch Reactor Presentation

E SYSTEMS

.

....

Holston Environ

Laboratory and Field Results

Bench scale flow reactor built and tested Reaction kinetics better than small batch studies Gained design criteria for laboratory pilot

_ [Reactor Volume =	2.7	L
65	Electrode width =	5.72	cm
	Wetted electrode depth =	11	cm
	# Electrode pairs =	8	
	Active electrode area. A =	0.124	m²

Current	Current	1 st Order	Half Life
	Density	Kinetic Rate, k	
(A)	(A/m²)	(min ⁻¹)	(min)
1.00	8.08	0.0529	13
1.50	12.12	0.0787	9
2.00	16.17	0.0826	8
2.50	20.21	0.0864	8

Technology Review and Evaluation, 24-June-2008, Vicksburg, MS

ERDC

Laboratory and Field Results

Holston Environn

STEVENS

ERDC

....

Laboratory Pilot System built and tested 30 gal Tank containing 8 pairs of 6" x 24" electrodes

System Works

• 41 mg/L RDX treated to below 100 ppb within 5 hours

106	L	
15	cm	
61	cm	
8		
1.80	m²	
	106 15 61 8 1.80	106 L 15 cm 61 cm 8 1.80 m ²

Cost Information

STEVENS

ERDC

	Cost of Laborat	ory Pi	ot
	Electrode Panels =		8
	Cost per Panel =	\$	135
	Electrode Cost =	\$	1,080
	Pump Cost =	\$	200
	Housing Cost =	\$	1,000
	Power Supply =	\$	5,000
	Total Cost =	\$	7,280
-			

Estimate of capital costs Upper Estimate, Without Economy of Scale

Capacity (gpd)	Capital Cost			
10,000	\$	1,601,460		
40,000	\$	1,934,520		
400,000	\$	7,929,603		

Estimate of operating costs Energy cost basis of \$ 0.10 per kW-hr as upper limit

Capacity (gpd)	Power Consumption (kW-h/d)	Cos	st per day	C	ost per year
168	3.94	\$	0.39	\$	143.66
10,000	234	\$	23.43	\$	8,551.43
400,000	9371	\$	937.14	\$	342,057.15

BAE SYSTEMS

DCEE

olston Environmenta

Tech

STEVENS

ERDC

....

Single	e 4	0,000 gpc	l der	nonstratio	on	unit capit	al and o	oera	ting costs
Year	C	apital Costs	Ope	rating Costs		Total	Discount	Net	Present Cost
0	\$	1,934,520.26	\$	108,060	\$	2,042,580	1.000	\$	2,042,580
1	\$	-1	\$	108,060	\$	2,150,640	1.022	\$	2,197,955
2	\$		\$	108.060	\$	2 258 701	1.044	\$	2,359.17
3	\$	-	\$	108 060	\$	2 366 761	1.067	\$	2 526 429
A	\$	650 120 26	\$	108.060	\$	3 124 941	1 091	\$	3 409 14
5	\$		\$	108,060	\$	3 233 001	1.115	\$	3 604 62
6	\$		\$	108.060	\$	3 341 061	1 139	ŝ	3 807 061
7	ŝ		\$	108.060	\$	3,449,121	1.165	\$	4.016.65
8	\$		\$	108.060	\$	3,557,181	1,190	\$	4,233,633
9	\$	650,120,26	\$	108.060	\$	4.315.362	1.216	\$	5.248.984
10	\$	-	\$	108,060	\$	4,423,422	1.243	\$	5,498,792
11	\$	12	\$	108,060	\$	4,531,482	1.270	\$	5,757,053
12	\$	-	\$	108,060	\$	4,639,542	1.298	\$	6,024,013
13	\$	-	\$	108,060	\$	4,747,602	1.327	\$	6,299,934
14	\$	650,120.26	\$	108,060	\$	5,505,783	1.356	\$	7,466,750
15	\$	~	\$	108,060	\$	5,613,843	1.386	\$	7,780,790
16	\$	-	\$	108,060	\$	5,721,903	1.416	\$	8,105,033
17	\$	-	\$	108,060	\$	5,829,963	1.448	\$	8,439,778
18	\$		\$	108,060	\$	5,938,023	1.480	\$	8,785,328
19	\$	650,120.26	\$	108,060	\$	6,696,203	1.512	\$	10,125,015
20	\$		\$	108,060	\$	6,804,264	1.545	\$	10,514,75

- Low operating costs
 - Single pump operation

Further Information

Additional Questions can be directed to:

Holston Environmental

STEVENS

....

ERDC

Dr. David Gent David.B.Gent@erdc.usace.army.mil (601)634-4822 Jared L Johnson Jared.L.Johnson@erdc.usace.army.mil (601)634-3050

Other research in electrochemical treatment applications:

P.M. Bonin, B. Dorin, L. Schutt, J. Hawari, N.J. Bunce. 2004. Electrochemical reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine in aqueous solutions. *Environmental Science and Technology 38*. 1595-1599

M.G. Neelavannan, Revathi, M., Ahmed Basha, C. 2007. Photocatalytic and electrochemical combined treatment of textile wash water. *Journal of Hazardous Materials*. 149. 371-378.

D. Rajkumar, Palanivelu, K. 2004. Electrochemical treatment of industrial wastewater. *Journal of Hazardous Materials.* B113. 123-129.

Y. Deng, Englehardt, J.D. 2006. Electrochemical oxidation for landfill leachate treatment. *Waste Management*. 27(3). 380-388.

Doppalapudi Rajesh B., George A. Sorial, and Stephen W. Maloney (2003), "Electrochemical Reduction of 2,4-Dinitrotoluene in a Continuous Flow Laboratory Scale Reactor," J. Envir. Engrg. 129, 192

Rajesh Doppalapudi, Dinesh Palaniswamy, George Sorial, and Stephen W. Maloney Pilot-Scale Reactor for Electrochemical Reduction of Nitroaromatics in Water, Simulated Wastewater Testing, ERDC/CERL TR-01-69, November 2001

Technology Review and Evaluation 24-Sep-2008

Meeting Minutes – Recorded by Mr. Don Yee

Minutes

24-25 September 2008 Waste Water IPT Meeting

1. Purpose

The objectives of this meeting are to provide the IPT a quick review of the bench-scale technologies; status of the nutsches procurement; introduce the Bimetal process; develop the working cost estimate for the FY09 program; and review the down-select criteria for the successful RDX reduction technology.

2. Background

At Jun 2008 meeting, the IPT agreed that we should proceed with development of a bench-scale pilot for the activated CFB and the Electrolysis. In addition we also continued to develop a better nutsche filter system to reduce the RDX load in the waste water effluents. BAE has developed two competing designs that NDCEE will be purchasing for demonstration (two of each design). The anoxic filter media development should be bench scale for demonstration before we scale up the prototype design. The hydrology study should continue and provide a predictive pattern for HSAAP's to control the amount of effluents to be discharged into the Holston River. Also continue to finalize the water balance around the RDX dewatering operation.

Since the Jun 2008 meeting, Stevens Institute of Technology has made rapid progress in their bimetal technology to totally decompose the RDX contaminants in waster water. The potential simplicity of the operation provides an intriguing situation for the IPT. Also, FY09 project funding considerations are being developed, along with questions on how affordable are the technologies, as well as supporting data/document including life cycle economics required to support the fund release document. This project must be approved by DA.

Due to conflicts, Dr. Maloney was not able to attend. A draft of down-select criteria was provided for discussion.

3. Discussion

- a. Mr. Paul Brezovec of NDCEE provided a status of the nutsche procurement. If there are no delays, we can expect delivery in late Nov/early Dec 08. However, the vendor indicated that it would be safe to expect delivery about Jan 09. Supporting documents including COTR approval were received and should proceed smoothly. NDCEE will provide two nutsches for each of the two designs. There will be a need to purchase 5 more to complete full set of nutsches at a cost of \$25K for each nutsche. In FY09, they will need to purchase 14 more nutsches at a total cost of \$350K. Also, there will be a need to purchase a vacuum system to extract the settle RDX in the settling basin. The cost of this is expected to be about \$100K.
- b. Review of the Hydrology of the Holston River shows that the Tennessee authority maintains the river at a fairly high level to insure there is sufficient flow to support the TVA operations. However, SAIC will design a monitor for tracking this flow at a cost of \$150K.
- c. Mr. Mark Klingenstein of SAIC discussed the benchscale anoxic media unit located in the waste water plant. The anoxic bugs are being grown in the new media. SAIC will support the effort with staff periodically. The expected cost for implementing this new design is \$1.5M.
- d. The current FY09 project is budgeted for \$15M. We are concerned about the affordability of the process. We need to keep track of the RDX treatment technology and its flexibility to handle varying loads. Mr. Todd Hayes agreed to provide the team with the projected Modernization production number. The IWWTP will be designed with modularity in mind and has the expansion capability for meeting the Modernization number. This is to be discussed later in the project.
- e. A list of down-select criteria was provided for the IPTs consideration. The IPT could not agree with a score due to insufficient data. We will revisit this at a later date. It is agreed that the next proposed meeting be held during the 1st week in Dec 08. A teleconference is scheduled for mid Oct 08.
- f. Mr. Jared Johnson presented the Electrolysis process and the unit is located in the line 10. The two bench-scale unit has a power generator located outside. Concern was raised about the electric spark in an explosive plant and the generation of hydrogen and oxygen by-products. Need safety review. Cost of this process is at \$3.5 M for a 40,000-GPD unit. Projected cost of this process for 400,000 GPD is \$35.0M.

- g. Mr. Larry Reynolds presented the water balance study. He indicated that we have a total flow of 800,000 GPD. There is a potential to separate contaminated from non-contact water to reduce this load. The unit needs to be designed for more efficient operation and should be sized at the regular production. This writer suggests that a modular design be used if it is determined that normal operation is 40,000 or larger. Also, we should include the decision to design the plant with expansion features for future expansion if the product mix changes.
- h. Mr. Reynolds also presented the activated CFB process. A bench-scale pilot plant was installed at HSAAP and uses a 20 to 1 recycle rate. Questions about the need for this recycle should be studied. We should contact Dr. Maloney for his opinion and whether we need to fully decompose the RDX? The cost of this option is about \$1.5M for 40,000 GPD. Projection cost for this operation is about \$7.5 M for a 400,000 GPD.
- i. Dr. W. Braida presented the Bimetal process in its simplicity. However, the source of bimetal needed major investigation and research. There are still many optimization and limitation parameters that need major development. Expedited effort to get this information would be recommended. Projection cost for this facility would be much lower than the CFB since existing equipment already has stirred tanks with a filter cloth quick separation of the bimetal. This should allow for much reduced reaction and separation time. Two of these units could be used for a 40,000 GPD. The cost would be refurbishment of the building and equipment. The cost for this refurbishment has to be developed. SAIC agreed to help SIT prepare this estimate. Also, to better control the process, it is recommended that HSAAP establish an analytical laboratory with HPLC capability to analyze the RDX. Currently, it takes about one week for turnaround and costs a few hundred dollars to analyze a sample for RDX.
- j. To support Mr. Smolinski's task to prepare the FY09 D&F, costs for the FY09 program were reviewed. As indicated above, the non-RDX treatment will require \$2.5M unburdened. Adding the burden overhead cost will increase this to about \$3.75M. This will only have \$11.25M for the RDX treatment plant. More detailed information for this project are being discussed and a detailed review will be performed.

4. Conclusion

The meeting met its objective and has provided key critical information for development of a path forward.

5. Path Forward

- a. Follow-up on Phase II scope at JMC and expedite if possible.
- b. Expedite the funding to SIT to insure concerns about the maturity of the bimetal technologies are addressed, especially the production and availability of the bimetal.
- c. Cost estimate for a prototype bimetal process if E-7 is used. SAIC will perform the estimate.
- d. Dr. Maloney will be invited to HSAAP for critique of the bench pilot plant and help develop the test plan. Also request input on what by-products the CFB do not have to treat because existing IWWTP could treat non-complex organic products.
- e. Assess any safety issues related to any of the processes.
- f. Follow-up with action items.

6. Action Items

- a. Next meeting is scheduled for the first week in Dec 2008.
- b. Provide a copy of meeting presentation to IPT.
- c. Support Ben Smolinski in preparing the FY09 D&F and project estimates.
- d. Develop a critical list of additional development research data for the bimetal process.
- e. Identify what other contaminants we could expect in the effluents.

Follow-up with above action items.

ERDC Technology Demonstration Presentation

Contact of RDX laden water with the electrode surface is accomplished by passing the water stream over a stacked array of electrodes in a continuous flow system

Technology Review and Evaluation, 24-Sep-2008, Holston Army Ammunition Plant

ERDC

Laboratory and Field Results

- Bench scale flow reactor built and tested
- Reaction kinetics similar to small batch studies
- Gained design criteria for laboratory pilot •

Current	Current	Residence	k _m	%		
(A)	Density (A/m ²)	Time (min)	(m/min)	Destruction		
1.5	6.96	13	0.000737	71.11%		
1.75	8.12	13	0.000702	69.38%		
2	9.28	13	0.000609	64.15%		
2.5	11.60	13	0.000666	67.43%		

Technology Review and Evaluation, 24-Sep-2008, Holston Army Ammunition Plant

Laboratory and Field Results

- Laboratory Pilot System built and tested
- 4 ft rectangular channel 6"x2.5" serves as reactive zone

System Works

- 90% Reduction of RDX in water from 20.6 mg/L to 2.0 mg/L at a flow rate of 220 gpd
- 97% Reduction of RDX in water from 9.3 mg/L to 0.2 mg/L at a flow rate of 135 gpd

Technology Review and Evaluation, 24-Sep-2008, Holston Army Ammunition Plant

Laboratory and Field Results

- Laboratory Pilot System built and tested
- 4 ft rectangular channel 6"x2.5" serves as reactive zone

Technology Review and Evaluation, 24-Sep-2008, Holston Army Ammunition Plant
ERDC

Technology Review and Evaluation, 24-Sep-2008, Holston Army Ammunition Plant

Laboratory Pilot Demonstration Data 24-Sep-2008

Ξ

OUT

Progress Report 10-Feb-2009

Electrochemical Flow-Through Reactor

Dr. David Gent

Jared L Johnson

US Army Engineer Research and Development Center Vicksburg, MS

Technology Review and Evaluation, 10-February-2009, Holston Army Ammunition Plant

Pilot Demonstration Progress

- Materials of construction, electrodes, power supply, and power relay have arrived in Vicksburg
- Reactor casing and frame design being finalized and constructed
- · Pump on order
- Data acquisition system sourced and being purchased

Technology Review and Evaluation, 10-February-2009, Holston Army Ammunition Plant

Capital Requirement

- The capital cost, especially of the electrodes, is the major cost component of this system. The largest opportunities for value engineering are in reducing electrode use and finding more cost effective materials.
- ERDC is looking into the required modular design to make cost effective decisions.
- ERDC is investigating cheaper electrode materials

Technology Review and Evaluation, 10-February-2009, Holston Army Ammunition Plant

	Electroc	hemical	Flow Reactor for Destructi Change shaded cells to estima	on of I te cost	Dissolv and perf	ed RDX - System Perfor ormance profile	m	ince
			Design Targets			Capital Cost Estimates		
Single PFR Eler L = W =	ment: 15 15	cm cm	Treatment Goal = Influent Concentration = Design Flowrate =	40 25 200000	lbs/d mg/L I gpd	# Electrode Plates = Cost per plate = Ballpark Capital =	\$ \$	24,990 250 6,247,500
# Plates =	42	CHI	Treatment System Results			Single Power Supply =	\$	8,400
Reactive A = k _m =	9.45 0.000300	m² m/min	Effluent Concentration = Influent Mass =	1.019 42	mg/L Ibs/d	Single Pump = # Required =	\$	4,100 11
C ₀ =	25 1.019	mg/L ma/l	Effluent Mass = Reduction =	2 95 92%	lbs/d	Subtotal =	\$	1,487,500
Q = Q _{STACK} =	0.886 4.43	L/min L/min	Outfall Flow =	4	MGD	Casing = # Required =	\$	500 59
Design Flowrate	ə:		Outran Reduction -	1.20	nig/L	Subtotal -	φ •	287,500
Q _D =	526	L/min				Data Acq. =	\$	15,000
Number of Elen	nents Requ 595	iired:				Total =	\$	8,047,500

Capital Requirement Calculator

Technology Review and Evaluation, 10-February-2009, Holston Army Ammunition Plant

Grade 26 Titanium

Grade 26 is a titanium alloy with a small amount of Rubidium. It is used for corrosive environments.

Currently being tested as an alternative electrode in small batch reactors.

Technology Review and Evaluation, 10-February-2009, Holston Army Ammunition Plant

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

1.1			NOE		UNID NO. 0704-0100						
Public reporting burden for this the data needed, and completin reducing this burden to Departr VA 22202-4302. Respondents display a currently valid OMB cc	collection of information is estima g and reviewing this collection of nent of Defense, Washington He should be aware that notwithsta ontrol number. PLEASE DO NOT	ted to average 1 hour per respons information. Send comments reg adquarters Services, Directorate fo nding any other provision of law, r RETURN YOUR FORM TO THE.	e, including the time for rev arding this burden estimate r Information Operations a to person shall be subject to ABOVE ADDRESS.	viewing instructions, se e or any other aspect nd Reports (0704-018 to any penalty for failing	earching existing data sources, gathering and maintaining of this collection of information, including suggestions for 8), 1215 Jefferson Davis Highway, Suite 1204, Arlington, ng to comply with a collection of information if it does not						
1. REPORT DATE (DD- June 2010	- <i>MM-YYYY)</i> 2. R Н	EPORT TYPE		3. [DATES COVERED (From - To)						
4. TITLE AND SUBTITE	.E			5a.	CONTRACT NUMBER						
Laboratory Dem from a Process V	onstration of Abiotic Vaste Stream	5b.	5b. GRANT NUMBER								
				5c.	PROGRAM ELEMENT NUMBER						
6. AUTHOR(S)		5d.	5d. PROJECT NUMBER								
David B. Gent, J Scott May, and S	ared L. Johnson, De Steven L. Larson	Holland, 5e.	5e. TASK NUMBER								
·				5f.	WORK UNIT NUMBER						
7. PERFORMING ORG U.S. Army Engineer	ANIZATION NAME(S) AN Research and Develop	8. F	PERFORMING ORGANIZATION REPORT NUMBER								
3909 Halls Ferry Roa Armament Research, Building 355	ad, Vicksburg, MS 39 Development, and En		ERDC/EL TR-10-8								
Picatinny Arsenal, N.	J 07806-5000										
9. SPONSORING / MO	NITORING AGENCY NA	ME(S) AND ADDRESS(E	S)	10.	SPONSOR/MONITOR'S ACRONYM(S)						
Headquarters, U.S. A	rmy Corps of Enginee										
Washington, DC 203	314-1000			11.	SPONSOR/MONITOR'S REPORT NUMBER(S)						
12. DISTRIBUTION / A	AILABILITY STATEME	NT									
Approved for public	release; distribution is	unlimited.									
13. SUPPLEMENTARY	NOTES										
14. ABSTRACT											
The Tennessee De	epartment of Environm	ient and Conservation (TDEC) will soon	establish a tota	al maximum daily load (TMDL) for						
Plant (HSAAP), a ma	anufacturer of military	explosives in Kingspo	rt, TN, will need a	dditional wast	ewater treatment in order to comply						
with this revised regu	lation. The objective of	of this effort was to der	nonstrate two tech	nologies, alkal	line hydrolysis and direct electro-						
chemical reduction, a	s potential pretreatme	nt systems. Three labor	atory scale pilot r	eactors were co	onstructed and tested: a 115-L semi-						
batch alkaline hydrol	ysis system, a 106-L r	otating electrode batch	electrochemical ti	reatment system	n, and a 300-mL/min packed						
All three laborator	rv scale pilot reactors	were effective in remov	ing RDX from HS	SAAP process	wastewater. A 10.000 gallon per day						
(gpd) alkaline treatm	ent system may be bui	lt for \$439,200 with a c	corresponding esti	mated annual of	operating cost of \$296,737. Based on						
the laboratory results	, a 10,000-gpd rotating	g electrode system may	be built for \$687,	520, with an a	nnual operating cost of \$184,599. A						
packed electrode continuous flow reactor may be built for $$1,774,000$, with an annual operating cost of $$82,308$. The present costs of											
electrode system, res	pectively. Given the p	otential of electrochem	ical treatment syst	ems to operate	at much lower costs, continued						
development and demonstration of electrochemical treatment systems is warranted.											
15. SUBJECT TERMS											
Alkaline hydrolysis		Holston Army Amn	nunition Plant (HS	SAAP) Was	stewater treatment						
Direct electrochemic	al reduction	RDX									
IU. SECURITI CLASSI			OF ABSTRACT	OF PAGES	PERSON						
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include						
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED		148							