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The ability to estimate mean particle size using simple, low-power optical instruments promises to
greatly expand coverage of particle size measurements in the ocean and advance understanding of
myriad processes from sediment transport to biological carbon sequestration. Here we present a method
for estimating the mean diameter of particles in suspension from high-resolution time series of simple
optical measurements, such as beam attenuation or optical backscattering. Validation results from a
laboratory clay aggregation experiment show a good fit with independent mean particle diameter esti-
mates in the 10–80 μm diameter range, with relative biases of 17%–38% and relative root mean square
errors of 10%–24%. In the 80–200 μm range, quantitative validation data were not available, but our
mean diameter estimates correlated strongly with particle settling rates. © 2013 Optical Society of
America
OCIS codes: (010.4450) Oceanic optics; (290.1350) Backscattering; (290.2200) Extinction; (290.5820)

Scattering measurements; (290.5850) Scattering, particles; (010.4458) Oceanic scattering.
http://dx.doi.org/10.1364/AO.52.006710

1. Introduction

Size is a fundamental characteristic of particles in
the ocean, playing a critical role in how particles
interact with each other and their environment. For
example, organism size is a major determinant of
ecosystem structure through its effects on metabolic
rates and trophic interactions [1,2]. Particle size is
also fundamental to biogeochemical cycling through
its effect on sinking rate; large organic particles such
as phytoplankton aggregates and fecal pellets sink
rapidly, transporting carbon to the deep ocean and
facilitating atmospheric CO2 drawdown [3–7].

Particle size is also critical to the understanding of
sediment transport and deposition, primarily as a
driver of sinking and aggregation rates within the

benthic boundary layer. These rates significantly af-
fect dispersal patterns of sediments and associated
nutrients, carbon, and contaminants in coastal sys-
tems. Improvement in understanding of these sedi-
ment processes has been a major aim of scientists
and engineers hoping to improve prediction of the
effects of dredging, contaminant release, and sea-
sonal riverine and other physical processes on water
quality in coastal regions [8–11].

Widespread measurements of particle size could
therefore greatly advance our understanding of
multiple oceanic processes, from phytoplankton
ecology to CO2 drawdown to sediment contaminant
transport. Many instruments, both bench-top and
in situ, are used for measuring size of marine par-
ticles, including microscopes, electrozone (Coulter)
counters, flow cytometers, cameras, and laser diffrac-
tion systems. However, the size, cost, ease of use,
power, and data requirements of these technologies
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limit the systematic measurement of particle size in
the ocean.

Shifrin [12,13] developed an inversion method for
estimating mean particle size in a water sample
using fluctuations in beam transmissometer mea-
surements caused by random distribution of par-
ticles. The low cost, moderate size, and widespread
deployment of beam transmissometers make this
an appealing method for expanding the coverage of
particle size measurements in the ocean. However,
Shifrin’s inversion has received little attention in
the oceanographic literature and has not, to our
knowledge, been tested using commercially available
equipment. Here we revisit Shifrin’s inversion and
present a similar but simpler inversion based on
the variance-to-mean ratio (VMR; see Table 1 for a
list of all abbreviations used in this paper) for
estimating mean particle size using not only beam

transmissometers, but also, unlike the Shifrin inver-
sion, using smaller, low-power in situ backscattering
and fluorescence sensors. Such sensors are already
widely deployed on platforms such as moorings
and autonomous floats and gliders, so the VMR
inversion has the potential to greatly increase the
coverage of in situ estimates of particle size at little
or no added cost.

In Section 2 we present the VMR inversion, and in
Section 3 we present validation data from a labora-
tory experiment, in which the particulate beam
attenuation cp and particulate backscattering bbp
(via scattering at 124°) of aggregating and settling
clay particles were measured over time [14]. We
use both the VMR and Shifrin inversions to convert
the variability in cp to mean particle size and apply
the VMR inversion to bbp as well. The estimated
mean particle sizes vary by more than an order of

Table 1. Table of Terms

Term Units Description

Ai μm2 Particle cross-sectional area
Ā μm2 Area-weighted mean Ai

Ācp, Ābbp μm2 Ā from the VMR inversion of cp and bbp
ĀShifrin μm2 Ā from the Shifrin inversion
ĀLISST μm2 Ā from the LISST PSD
Ā� μm2 Mean Ai weighted by optical cross section
autocorr�Δt� — Temporal autocorrelation for lag Δt
bbp m−1 Particulate backscattering coefficient
C — Particle beam attenuance
c m−1 Beam attenuation coefficient
cp m−1 Particulate beam attenuation coefficient
Di μm Equivalent circular diameter of Ai

D̄ μm Equivalent circular diameter of Ā
D̄cp, D̄bbp, μm D̄ from the VMR inversion of cp and bbp
D̄cp ac9, μm D̄cp from the ac-9 cp measurements
D̄cp LISST, μm D̄cp from the LISST cp measurements
D̄Shifrin μm D̄ from the Shifrin inversion
D̄LISST μm D̄ from the LISST PSD
E�⋅� Expected (mean) value of a variable
i Class of identical particles
Ni — Number of particles in class i within the sample volume of an instrument
nVMR — Number of independent samples used to calculate the VMR
PSD Particle size distribution
Q, Qbb, Qc — Optical efficiency: Fraction of incident light backscattered (Qbb) or attenuated (Qc) by a particle
Rcp min−1 Relative rate of decrease in cp
S μm2 Cross sectional of a transmissometer beam (perpendicular to the beam)
s – Spectral slope of D̄cp�λ�
t s Time
tres s Particle residence time in V
tsamp s Integration time of a single measurement
T — Particle beam transmittance
V m3 Sample volume of an instrument
Var�⋅� Variance of a variable
VMR Variance-to-mean ratio
SPM gm−3 Suspended particulate mass concentration
Std�⋅� Standard deviation of a variable
α — Correction for particle movement
β m−1 sr−1 Volume scattering function
βp m−1 sr−1 Particulate volume scattering function
Δt s Lag time used for calculating autocorrelation
λ nm Wavelength of light (in air)
τ — tres∕tsamp
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magnitude during the experiment and agree closely
with both independent estimates of size and mea-
sures of particle settling throughout most of this size
range, with the VMR inversion performing slightly
more consistently than the Shifrin inversion. In
Section 4, we discuss the accuracy of the VMR inver-
sion and its potential for field application.

2. Methods

A. VMR Inversion Equation

The VMR inversion is defined in this section for a
time series of the particulate beam attenuation coef-
ficient cp but can equally be applied to other additive
optical properties, such as bbp. The VMR inversion is
used to estimate a weighted mean cross-sectional
area Ā of particles in suspension. Ā is formally de-
fined in Eq. (1), where t is time, E�Ni�t�� is the mean
number of particles of class iwithin a sensor’s sample
volume and Ai is the cross-sectional area of a particle
of class i. The VMR inversion is given in Eq. (2),
where Ācp is the VMR inversion estimate of Ā,
Var�cp�t�� and E�cp�t�� are the variance and mean of
cp�t�, V is the sensor sample volume,Qc is the attenu-
ation efficiency of a particle (also known as the
extinction efficiency Qext), α�τ� is a correction for
water movement during the integration time of a
single measurement (tsamp), defined in Eq. (3), and
τ is the ratio of particle residence time tres within
the sample volume to tsamp [Eq. (4)]. The input
parameters of Eq. (2) are described in detail in
Subsections 2.A.1–2.A.4. Equations (1)–(4) are de-
rived in Appendices A–C, given the assumptions that
ambient particle concentration is constant over the
period of a single VMR inversion calculation, par-
ticles are randomly distributed in space, all particles
share the same Qc (see Subsection 4.E.1 and
Appendix A), and random fluctuations of the number
and size of particles in V are the only source of vari-
ance in cp. For ease of interpretation, we convert es-
timates of Ā into an equivalent diameter D̄ by
assuming a circular cross section [Eq. (5)]:

Ā �
P

i E�Ni�t��A2
iP

i E�Ni�t��Ai
; (1)

Ācp � Var�cp�t��
E�cp�t��

V
Qc

1
α�τ� ; (2)

α�τ� �
�
1 − �3τ�−1 if τ ≥ 1
τ − τ2

3 if τ ≤ 1
; (3)

τ �
�

tres
tsamp

�
; (4)

D̄ � 2
�����������
Āπ−1

p
: (5)

1. Time Series Statistics, Var�cp�t�� and E�cp�t��
The variance and mean are calculated over a finite
period of time, during which changes in particle size
and concentration should be minimal. If present,
variance from sources other than the random distri-
bution of particles in space should be removed to
avoid a positive bias in the VMR inversion. Variance
from low-frequency sources may be removed using a
high-pass filter, as discussed in Subsection 2.C.2.

2. Sample Volume, V
If the response of the sensor to a particle within its
sample volume is the same regardless of particle
location (homogeneous), then V is simply the sensor’s
geometric sample volume. We define V for the non-
homogeneous case in Appendix B [Eq. (B7)].

3. Attenuation Efficiency, Qc

The attenuation efficiency Qc is defined as the frac-
tion of light incident on the cross-sectional area of a
particle that is scattered away from the detector or
absorbed. For the evaluation dataset presented here,
we use two different values as estimates of Qc: first,
literature values of Qc to simulate field applications
of the VMR inversion in which independent size mea-
surements would not be available; and second, we
calculateQc empirically, via Eq. (6) in order to isolate
other potential sources of bias. Note that the VMR
inversion assumes that all particles share the same
Qc, so that the mean Qc in Eq. (6) applies to all par-
ticles. Implications of variable Qc are discussed in
Subsection 4.E.1:

Qc �
E�cp�t��P

i E�Ni�t��AiV−1 : (6)

4. Correction for Water Movement, α�τ�
Movement of the sample relative to the sample vol-
ume during tsamp will increase the volume sampled,
requiring a further correction factor α�τ�, given in
Eq. (3) (derived in Appendix C). For the validation
dataset presented here, movement of the sample
was slow relative to tsamp for the ac-9 and ECO BB,
so α�τ�was close to one (Table 2). However, the longer
averaging time settings of the LISST, especially dur-
ing Exp. 2 cause α�τ� to drop as low as 0.35, becoming
an important term in the VMR inversion.

B. Evaluation Dataset

The VMR inversion was tested using previously col-
lected data from two laboratory clay aggregation ex-
periments (Exp. 1 and Exp. 2) [14]. Setup and results
of the two experiments were similar; however, during
Exp. 1, a computer malfunction created a 10 min
data gap, so the data presented in this section come
from Exp. 2, unless noted otherwise. Initially, 4.2 g of
bentonite clay were added to 120 L of reverse osmosis
water in a 46-cm deep, 100 × 45 cm wide black
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laboratory sink. Subsequently, 47.6 g of CaCl2 salt
dissolved in a small volume of water was added to
the sink to induce aggregation; the water in the sink
was stirred for ∼2 min and not stirred thereafter.
However, acoustic Doppler velocimeter measure-
ments recorded 2–3 mms−1 particle speeds for the
remainder of the experiment (data not shown), most
likely due to convection. During the course of the 4 h
experiments, the particle size distribution (PSD) was
estimated using a Sequoia Scientific LISST-100 (type
B; standard inversion; size range 1.4–230 μm
diameter). Equation (1) was applied to the LISST
PSD to calculate ĀLISST, which was then converted
to an equivalent diameter D̄LISST using Eq. (5). The
volume scattering function β was measured at 124°
[15] and 660 nm by a WET Labs ECO BBRT in
Exp. 1 and by a WET Labs ECO BB3 in Exp. 2.
The beam attenuation coefficient c was measured
with an acceptance angle of 0.93° and a path length
of 10 cm by a WET Labs ac-9 (nine wavelengths be-
tween 412 and 715 nm; data reported here are at
650 nm for comparison with the ECO BB data unless
otherwise noted). The LISST also measured c, but
with a smaller acceptance angle of 0.0269° and a
shorter path length of 5 cm (670 nm only). The LISST
was configured to sample at 0.25 Hz (Exp. 1) and
0.1 Hz (Exp. 2), the ac-9 at 6 Hz, and the ECO BB
sensors at 1.1 Hz (Exp. 1) and 1.0 Hz (Exp. 2). Blank
measurements were collected in the sink with both
the ac-9 and the ECO BB sensors before addition
of the clay. Mean blanks were subtracted from all
subsequent measurements to yield cp and the
particulate scattering coefficient βp. The equation
bbp � 2πχβp was used to derive bbp from βp at 124°,
using χ � 1.08 [15].

The first ∼1.6 h of the experiment was dominated
by aggregation (referred to hereafter as the “aggrega-
tion period”); D̄LISST increased by a factor of ∼10,
accompanied by increased variability in cp and bbp
on time scales <1 min, while mean cp and bbp on
scales of minutes changed by less than 25% (Fig. 1).
At 1.6 h (Fig. 1, gray dashed line), aggregates were
recorded in the LISST’s largest size bin in significant
numbers (10% of total aggregate area concentration),
so after this point some aggregates likely exceed the
LISST’s upper size limit and are not included in
D̄LISST. The remainder of the experiment after 1.6 h
was a period of rapid settling (referred to hereafter as
the “settling period”), with decreases in mean cp and
bbp exceeding 70% (Fig. 1).

C. Data Processing for VMR Inversion

We calculated D̄cp at 3-min intervals over the course
of the experiment using Eq. (2). We similarly calcu-
lated D̄bbp by substituting bbp for cp and Qbb for Qc in
Eq. (2). In this section we describe in detail the steps
taken to calculate D̄cp and D̄bbp from the time series
of cp and bbp.

1. Bin Width of VMR Calculation
The VMR inversion was calculated in 3-min bins to
minimize the change in D̄ over a single bin while
still obtaining an acceptable VMR precision (<25%
relative standard deviation). If rare particles
(E�Ni�t�� < 10) do not dominate the bbp or cp signal,
then the VMR precision can be approximated by
the precision of the sample variance of a normal dis-
tribution [Eq. (7)], where nVMR is the number of in-
dependent samples and Std�VMR� is the standard
deviation of the sample VMR [16]. Here nVMR can
be approximated by the ratio of the bin width to
tres or tsamp (whichever is larger) yielding nVMR of
32–45 for all sensors except the LISST in Exp. 2,
whose 10-s integration time reduced nVMR to 18.
Theoretical minimum relative VMR precisions calcu-
lated via Eq. (7) and converted to relative D̄cp or D̄bbp
precisions are given in Table 3. In addition to provid-
ing sufficient precision, the bin width should also be
greater than the filter width (see Subsection 2.C.2) so
as not to reduce variance more than intended:

Table 2. VMR Inversion Constant Input Parameters

Sensor (λ, nm) Experiment tsamp �s� tres �s� τ α Q (Empirical) Q (Literature) V �ml�
ECO BBRT (660) Exp. 1 0.87 5.6 6.4 0.95 0.01 0.024 0.62
ECO BB3 (660) Exp. 2 0.95 4.5 4.7 0.93 0.013 0.024 0.62
ac-9 (650) Exp. 1 0.003 4.3 1400 0.9998 1.53 2 5
ac-9 (650) Exp. 2 0.003 4.6 1500 0.9998 1.56 2 5
LISST (670) Exp. 1 4 3.8 0.95 0.65 1.68 2 1.86
LISST (670) Exp. 2 10 4 0.4 0.35 1.65 2 1.86

Fig. 1. Time series of unbinned optical data during Exp. 2: D̄LISST
(green), cp from ac-9 (black), and LISST (red), and bbp (blue).
Dashed gray line at 1.6 h divides the “aggregation period” from
the “settling period”.
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Std�VMR�
E�VMR� �

��������������������
2

nVMR − 1

s
: (7)

2. Detrending Filter
To minimize variance from sources other than
particle size, (e.g., small scale patchiness or non-
random distribution of particles), cp and bbp time
series were detrended by subtracting a filter [e.g.,
Fig. 2(a), red line] consisting of a running median
followed by a running mean, both with windows of
50 s. This filter was chosen after experimentation
with various filters on simulated time series. The
50-s window is approximately 10 times tres (see
Subsection 2.C.3). In simulated time series, this de-
trending filter with window 10 times either tres or
the sample interval (whichever is larger) preserved
∼90% of the variance due to particle size, while
minimizing bias due to any variability in concentra-
tion on scales of minutes and longer (data not
shown). Note that tres in this study is calculated us-
ing autocorrelations in the detrended data (after
applying the filter), so a guess or alternative esti-
mate of tres must be used when deciding the initial

filter width. If the subsequent autocorrelation-
based tres estimates (Subsection 2.C.3) are very dif-
ferent from the initial guess, then a new detrending
filter can be applied and a new tres calculated until
the filter width is close to 10 times tres.

3. Estimation of Residence Time
To estimate tres, temporal autocorrelations were cal-
culated on the detrended time series at 15 min inter-
vals using Eq. (8), where Δt is lag time. Strong
positive autocorrelations (>0.5) were found at
Δt < 2 s for both ac-9 cp and bbp measurements, and
residence time was estimated as twice the lag time
corresponding to autocorr�Δt� � 0.5. The median es-
timated residence times across all 15 min bins for
each of the two experiments were 4.3 and 4.6 s for
ac-9 cp and 5.6 and 4.5 s for bbp (Table 2). We estimate
the mean path lengths of particles passing through
the sampling volumes of the ECO BB and ac-9 as
1 cm and 8 mm, respectively, so these residence time
estimates are consistent with acoustic Doppler veloc-
imeter measurements (measured in Exp. 2 only) in-
dicating 2–3 mms−1 particle movement throughout
the course of the experiment (data not shown). The
LISST cp time series were not strongly autocorre-
lated due to lower sampling frequency, preventing
estimation of tres via Eq. (8). Instead, ac-9 tres was
scaled to the LISST’s smaller weighted beam width
(7 mm versus 8 mm: 0.875×) to yield tres estimates of
3.8 and 4.0 for Exps. 1 and 2, respectively.

autocorr�Δt� �
Pn−L

t�1 cp�t� � cp�t� Δt�Pn−L
t�1 cp�t�2

: (8)

4. Outlier Removal
To decrease uncertainty in the VMR, large outliers in
the detrended time series [Fig. 2(c), red circles] with
absolute values greater than a threshold of 4 times
the interquartile range of each 3 min bin [Fig. 2(c),
green lines] were eliminated from both the raw and
detrended time series (<0.2% of data points removed
from each time series). Note that very large particles
can cause positive outliers, which, if present in suf-
ficient numbers, may be analyzed separately [17–19].

5. Calculation of Mean and Variance
After outlier removal, mean cp and bbp were calcu-
lated for each bin [Fig. 2(b)] from the unbinned time

Table 3. VMR Performance During Validation Period (t � 0.75–1.6 h)

ECO BBRT (660) ECO BB3 (660) ac-9 (650) ac-9 (650) LISST (670) LISST (670)

Experiment Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

Mean relative bias (lit. Q) �95% conf. 38� 10% 29� 12% 26� 6% 20� 6% 17� 11% 32� 13%
Mean relative bias (empirical Q) �95% conf. −11� 7% −7� 9% 10� 5% 7� 5% 7� 10% 20� 12%
Slope �95% conf. (log 10 scale) 1.04� 0.13 1.16� 0.14 1.02� 0.09 1.02� 0.11 0.97� 0.17 1.07� 0.20
Relative RMSE 14% 16% 10% 12% 18% 24%
nVMR 32 40 42 39 45 18
Minimum relative precision of D̄ 12% 11% 11% 11% 10% 16%
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Fig. 2. Calculation of mean and variance of cp from the ac-9 (Exp.
2). (a) Raw unbinned cp time series (blue) and detrending filter
(red). (b) Means calculated from raw time series in 3 min bins.
(c) Detrended time series (blue), with outlier threshold (green)
and outliers (red circles). (d) Variances calculated from detrended
time series in 3 min bins. Dashed gray line at 1.6 h divides the
“aggregation” and “settling” periods in all panels.
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series [Fig. 2(a), blue line]. Variances [Fig. 2(d)] were
calculated from the detrended time series [Fig. 2(c),
blue line] for the same bins.

6. Estimation of Qc and Qbb

Empirical estimates of Qc and Qbb over the course of
the experiment (Fig. 3) were obtained by dividing
mean values of bbp and cp by the total cross-sectional
area concentration derived from the LISST PSD
[Eq. (6)]. Patterns in Qc and Qbb were similar during
both experiments, but Qbb was consistently ∼30%
higher during Exp. 2, most likely due to uncertainty
in the calibrations of the two ECO BB sensors [20].
Divergence between LISSTand ac-9Qc after the first
hour is likely due to the ac-9’s larger acceptance an-
gle, which causes it to underestimate somewhat the
attenuation due to larger particles [21]. During the
settling period the largest aggregates likely sur-
passed the maximum LISST size bin, leading to an
under-estimate of total area concentration and a
positive bias in Qc and Qbb estimates. During the ag-
gregation period (Fig. 3, left of vertical dashed lines),
changes in estimated Qc and Qbb were small (<9%)
despite a large increase in DLISST (Fig. 1), so the
median Qc and Qbb from the aggregation period
(Table 2) were applied to the entire time series.
The use of a single Q also ensures that any trends
in Ācp and Ābbp are entirely independent from trends
in the LISST PSD. Note, however, that the VMR in-
version is most valuable in applications where PSD

measurements are not available, in which case liter-
ature values of Qc and Qbb must be used in lieu of
these empirical estimates, adding uncertainty to
the VMR inversion.

In order to simulate an application in which Qc
could not be determined empirically, we chose the
theoretical asymptotic value Qc � 2 for Di ≫ λ [22].
Qbb is less well constrained in the ocean, but
we can set a likely range of 0.004 < bbp∕cp < 0.035
based on literature values of marine particulate
backscattering ratios (0.005–0.035) [23,24] and
single-scattering albedos (0.8–1.0) [25]. In this case,
a choice of Qbb � 0.024 (bbp∕cp � 0.012; Qc � 2) con-
strains additional uncertainty in Qbb within a factor
of 3, equivalent to D̄bbp within a factor of 1.7 (Table 2).
In this study we evaluate overall VMR inversion per-
formance using these literature values of Qc and Qbb
(Figs. 4 and 5), but we use our empirical estimates of
Qc and Qbb for the remaining analyses (Figs. 6–8)
in order to explore other possible sources of bias.

7. Instrument Sampling Volume and Integration
Time, V and tsamp

We used an ac-9 sample volume V of 5.0 ml based on
manufacturer specifications (beam diameter: 0.8 cm;
path length: 10 cm). The ECO BB and LISST sample
volumes (0.62 and 1.9 ml, respectively) were calcu-
lated using Eq. (B7) to account for inhomogeneous
sensing efficiency within the sample volume (see
Appendix B). The ac-9 tsamp at each wavelength is
3 ms (WET Labs ac-9 User’s Guide revision T), and
we approximate the ECO BBRT and BB3 tsamp as the
inverse of the sampling frequency minus a 50 ms
overhead time: 0.87 and 0.95 s in Exp. 1 and Exp.
2, respectively. LISST tsamp is simply the averaging
period: 4 and 10 s in Exps. 1 and 2, respectively.
These values of tsamp, combined with the values of
tres reported in Subsection 2.C.3, yield correction fac-
tors α�τ� of 0.9998 for the ac-9, and 0.95 and 0.93 for
the ECO BBRT and ECO BB3, and 0.65 and 0.35 for
the LISST in Exps. 1 and 2, respectively (Table 2).0 1 2 3 4
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Fig. 3. Time series of direct estimates of Qc from ac-9 cp (panel a;
light colors),Qc from LISST cp (panel a; dark colors) andQbb (panel
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3. Results

A. VMR Inversion and Comparison with LISST

Patterns of D̄cp (Fig. 4, black and red lines) and D̄bbp

(Fig. 4, blue line) were similar. At the start of both ex-
periments, there was a factor of ∼2.5 discrepancy be-
tween D̄LISST and both D̄cp and D̄bbp. This discrepancy
disappeared gradually over the first 0.75 h. This
“period of initial bias” is discussed in Subsection 4.A.2
and is excluded from the validation regressions in
Fig. 5. During the “validation period” from hour 0.75
(Fig. 4, solid gray line) to the start of the settling
period (Fig. 4, dashed gray line), D̄LISST agreed closely
with both D̄bbp and D̄cp. Validation regressions of both
log10�D̄bbp� and log10�D̄cp� against log10�D̄LISST� from
this period (Fig. 5, bold colors) were highly linear
(r2 ≥ 0.95) and slopes were close to 1∶1. Mean relative
biases of D̄cp and D̄bbp ranged from �17% to �38%
(Table 3). When literature Qc and Qbb were replaced
by empirical estimates (Table 2), relative biases de-
creased to −11%–20% (Table 3). During the settling
period beginning at 1.6 h (dashed gray lines in Fig. 4),
D̄bbp and D̄cp continued to increase to apeak of approx-
imately 200 μmat 2.2 h and then declined to∼100 μm
by the end of the experiment (Fig. 4), presumably as
the largest aggregates settled out of suspension.
D̄LISST remained lower and more constant during
the settling period, never exceeding 100 μm, likely
due the LISST’s inability to detect particle sizes
>230 μm. During the settling period, the LISST area
PSD was sharply peaked at the largest size bin,
strongly suggesting thepresence of larger aggregates,
but a “stranded” population of particles <10 μm
maintained D̄LISST below 100 μm [14].

B. Spectral Dependence of D̄cp

A power law of the form cp�λ� ∼ λ−γcp (where λ is wave-
length) was fit to the ac-9 cp time series, and the
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Fig. 5. (a) log10�D̄LISST� versus log10�D̄cp ac9� (a),
(b) log10�D̄cp LISST� (b), and (c) log10�D̄bbp� (from Exps. 1 (blue)
and 2 (red). Literature values ofQbbp andQc were used to calculate
D̄bbp and D̄cp. Solid lines are type-I linear regressions of log-
transformed data. Pale data points, from outside the validation
period, are excluded from the regressions. Slopes (�95% conf.)
and r2 values of are given in the Table 3, along with the mean
biases (�95% conf.).

Fig. 6. Spectral slope γDcp of D̄cp�λ� over the course of Exps. 1
(blue) and 2 (red). Empirical estimates of Q were used at each
wavelength to calculate D̄cp. Horizontal dashed line denotes no
spectral dependence, and vertical gray line indicates the start of
the validation period.
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resulting spectral slope γcp varied between 1.35 and
1.6 during the experiments [14]. Both E�cp� and the
empirical Qc (calculated separately at each wave-
length) have the same spectral slope: γcp. If the
VMR inversion assumptions hold, the spectral slope
of Var�cp� should be twice γcp. These spectral depend-
encies should cancel out in Eq. (2), so γDcp, the spec-
tral slope of D̄cp, should be zero (i.e., D̄cp is accurate at
all wavelengths), regardless of γcp. However, during
the first 0.75 h of the experiment, coincident with
the disagreement between D̄cp and D̄LISST, we ob-
served a strong spectral dependence of D̄cp (Fig. 6).
The D̄cp spectral slope was steepest (γDcp < − 1.5)
at the start of the experiments, increased to zero
(no spectral dependence) in the first hour, and re-
mained within 0� 0.2 for the remainder of the ex-
periments (Fig. 6). The low γDcp during the first
0.75 indicates a violation of at least one VMR inver-
sion assumptions and provides further justification
for rejecting the early VMR inversion results. We
discuss possible sources of both the low γDcp and
the early disagreement between D̄cp and D̄LISST in
Subsection 4.A.2.

C. Relationship Between D̄ and Clearance Rate Rcp

The rate at which water at the depth of the sensors is
cleared of particles is a function of sinking rate (as
well as vertical concentration gradient and convec-
tive mixing rate). The rate of relative decrease in
cp per minute, Rcp [Eq. (9)] is a measure of particle
clearance rate. Because particle size is a primary
driver of sinking rate [26], we expect that Rcp will be
positively related to D̄cp; Fig. 7(a) shows that it is.
The cp time series was smoothed using a second-
order polynomial spline with a 70 min window before
the calculation of Rcp. The first derivative of the
smoothed cp time series was approximated at time
t (in min) using a 6 min window and normalized to
cp to yield Rcp [Eq. (9)]:

Rcp � −

1
cp

dcp
dt

≈
1
cp

cp�t − 3 min� − cp�t� 3 min�
6 min

:

(9)

D̄cp was further averaged into 9-min bins to reduce
variability. There was a strong positive relationship
between Rcp ac9 and all estimates of D̄ during the ag-
gregation phase [Fig. 7(a), plus sign]. During the set-
tling phase [Fig. 7(a), open circles], the relationships
of Rcp ac9 with D̄cp ac9 and D̄bbp change little while the
relationship with D̄LISST changes sharply. Figure 7(a)
supports the idea that the LISST PSD misses large
particles during the settling period and provides
qualitative support for the validity of D̄cp when the
LISST could not be used for quantitative validation.
For comparison, the spectral slopes of cp and bbp, two
other proposed proxies for particle size [27,28], did
not maintain strong, consistent relationships be-
tween either D̄LISST [14] or Rcp ac9 [Fig. 7(b)] during

this experiment. The relationship between Rcp and D̄
is discussed further in Subsection 4.A.3.

D. Comparison with Shifrin’s Inversion

The Shifrin inversion is given in Eq. (10), adapted
from Shifrin [13] (his Eq. 6.28), where T is the trans-
mittance, defined as the ratio of transmitted light in
the presence of particles to transmitted light in the
absence of particles, C is the attenuance, defined as
ln�T−1�, S is the cross section of the transmissometer
beam, and Φ is a function of C, given in Eq. (11)
(adapted from Shifrin [13]; his Eqs. 6.18, 6.21) and
ψ is an integration variable in Eq. (11):

ĀShifrin � E�C�t��Var�T�t��
ϕ�E�C�t���

S
Qc

; (10)

ϕ�C� � 2Ce−2C
Z

π

0

�
exp

�
C�ψ − sin ψ�

π

�
− 1

�
sin ψdψ :

(11)

Note that Shifrin’s [13] Eq. 6.18 contains a mis-
print, but the correct equation is in an earlier paper
[12] (his Eq. 3).

As with the VMR inversion, we detrended T and
removed outliers before calculating the variance
and calculated the Shifrin inversion for 3 min bins.
The integral in Eq. (11) was numerically approxi-
mated using a quadrature algorithm (MATLAB,
“integral.m”). As before, ĀShifrin was converted to
D̄Shifrin using Eq. (5).
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Fig. 7. (a) Relationships between Rcp ac9 and D̄cp ac9 (black), D̄bbp

(blue), or D̄LISST (green). (b) Relationships between Rcp ac9 and
spectral slopes of cp (black) and bbp (blue). Data points in both
panels are 9 min bin averages from the validation period (�)
and settling period (o) of Exp. 2. Solid lines show type I linear re-
gressions of Rcp ac9 against settling period D̄cp ac9 (r2 � 0.93), D̄bbp

(r2 � 0.75), D̄LISST (r2 � 0.63), cp spectral slope (r2 � 0.01), and bbp
spectral slope (r2 � 0.07). Regressions in panel (a) are all highly
significant (p < 0.01), whereas regressions in panel (b) are not
(p > 0.4). Empirical estimates of Qcp and Qbbp were used to calcu-
late D̄cp ac9 and D̄bbp.
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The magnitude and patterns in D̄Shifrin and D̄cp

were very similar, including the initial bias and
the disagreement with D̄LISST during the settling
period, but the two methods diverged at higher val-
ues of cp. Both D̄Shifrin and D̄cp were calculated from
all ac-9 wavelengths during the validation period us-
ing wavelength-specific empirical Qc estimates and
divided by corresponding values of D̄LISST to estimate
bias. Mean relative biases were 1.09 for D̄cp and 0.91
for D̄Shifrin. Type I linear regressions againstC show a
significant negative correlation between C and bias
in D̄Shifrin but not between C and D̄cp bias, causing
the two inversions to converge as C approached zero
(Fig. 8). This result is discussed in Subsection 4.C.

4. Discussion

A. VMR Accuracy

The strong agreement between D̄bbp, D̄cp ac9, and
D̄cp LISST throughout the experiment (Fig. 4) indi-
cates that the VMR inversion is reliable and robust
to differing principles of instrument operation, differ-
ing sampling volumes, differing bin averaging, and
even differing transmissometer acceptance angles
(even though the larger acceptance angle of the ac-
9 causes it to underestimate cp due to the larger
particles [14]). However, the VMR inversion does not
always agree with D̄LISST. We asses the accuracy of
the VMR inversion (and the LISST) during three
distinct periods.

1. Validation Period

During the validation period, D̄cp and D̄bbp were
strongly correlated with D̄LISST over nearly an order
of magnitude (10–80 μm; r2 ≥ 0.95—log scale) with
slopes close to 1∶1 and mean biases of 17%–38%
(Fig. 5; Table 3). The largest single cause of bias is
uncertainty in Qbb and Qc; use of direct estimates
(Table 2) reduced biases to −11% to� 20%. The
causes of these remaining small but significant mean
biases are unknown, but may include uncertainty in
V , slightly nonrandom particle distribution, a small
size-dependence of Qbb and Qc, instrument noise pro-
portional to the signal, and/or a slight low bias in
D̄LISST due to particles >230 μm. Given the uncer-
tainties involved in estimating particle size by any
method, these results are encouraging. For compari-
son, mean discrepancies of 11% were found between
median particle diameters measured by a LISST and
a Coulter counter across a wide variety of particle
types [29]. Biases of up to 38% may often be accept-
able in natural systems where D̄ varies by a factor of
2 or more. Furthermore, the strong relative agree-
ment between D̄cp, D̄bbp, and D̄LISST (regression
slopes on log scale: 1.02–1.16) supports the use of
the VMR inversion as a relative size indicator,
regardless of the choice of Qbb or Qc.

2. Initial Bias
The assumption that a single value of Qbb or Qc ap-
plies to all particles may introduce some bias in the
VMR inversion, but it is unlikely that variability in
efficiencies can explain the large (factor of 6) and
ephemeral bias, observed at the start of the experi-
ments, given the stability of Qc and Qbb estimates
throughout the aggregation phase (Fig. 3), indicating
minimal relationship between Qbb or Qc and size.

The discrepancy between D̄LISST and both D̄cp and
D̄bbp during the first 0.75 h is most likely caused by
an additional source of variance other than particle
size, leading to a positive bias in the VMR inversion.
This extra variance apparently decreased over most
of this early period [e.g., Fig. 2(d)], causing corre-
sponding decreases in D̄cp and D̄bbp (despite increas-
ing particle size). The strong negative γDcp associated
with this extra variance indicates that its spectral
slope is likely flat or even negative (higher at higher
wavelengths and opposite to γcp). The cause of this
extra variance is not clear. Nonrandom (patchy) dis-
tribution of particles at the start of the experiment
would increase variance. However, such clustering
would cause the same relative bias at all wave-
lengths and cannot explain the negative γDcp (Fig. 6).
The initial mixing of salt into the sink would have
caused inhomogeneity in index of refraction (“schlie-
ren”), which could lead to fluctuations in cp, but this
effect would also increase mean cp and interfere with
the LISST PSD inversion [30]. The source of the vari-
ance could be electronic noise, but it is unclear why it
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Fig. 8. Bias in D̄cp relative to the D̄LISST (blue x’s) is not signifi-
cantly correlated with attenuance C (type I linear regression:
y � −0.02� 0.04x� 1.12� 0.06; r2 � 0.01). Relative bias in
D̄Shifrin (red o’s) decreases as a function of C (type I linear regres-
sion: y � −0.15� 0.03x� 1.12� 0.05; r2 � 0.21). Data from the
validation period of both experiments at all ac-9 wavelengths
are included. Empirical estimates ofQcp andQbb were used at each
wavelength to calculate both D̄cp and D̄Shifrin.
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would affect all sensors in both experiments in such
similar ways.

Regardless of its source, the relative effect of added
variance is greatest at low D̄, when variance due to
particle size is small; after 0.75 h, the rapid increase
in variance due to increasing D̄ likely overwhelmed
any remaining bias.

3. Settling Period
During the settling period, the presence of aggre-
gates too large for the LISST inversion to constrain
prevented quantitative assessment of VMR inver-
sion accuracy. However, the strong positive relation-
ships between D̄cp, D̄bbp, and Rcp during this period
[Fig. 7(a)] provide qualitative validation that D̄cp and
D̄bbp continue to track particle size. Perhapsmore im-
portantly, this relationship demonstrates the poten-
tial of the VMR inversion as a tool for studying the
dynamics of particle settling in the ocean.

B. VMR Precision

The D̄LISST time series was much smoother than the
D̄bbp and D̄cp time series (Fig. 4), despite much
shorter averaging times (10 s versus 3 min), sug-
gesting much higher D̄LISST precision. The root mean
square errors (RMSEs) of the validation regressions
should therefore be close to the theoretical precision
of the VMR, plus the effect of any nonlinearity in the
regressions. The RMSEs of the D̄cp ac9 validation re-
gressions correspond to relative precisions of 10%
and 12%, close to the theoretical relative precision
of 11% (Table 3). D̄cp LISST and D̄bbp relative RMSEs
were higher than theoretical values by 2–8 percent-
age points, perhaps due to added uncertainty from
inhomogeneous sample volumes. These results sup-
port the use of Eq. (7) to provide an initial estimate of
VMR precision for planning sampling strategy,
although sensor-specific details may decrease preci-
sion somewhat, in which case wider bins may be
needed to achieve target precision.

C. Comparison with Shifrin

The performance of the Shifrin inversion was similar
to that of the VMR inversion; agreement between the
two was usually within 20% (Fig. 8) and improved at
longer wavelengths and lower C. However, the dis-
agreement at high values of C is a result of differing
inversion assumptions, which are discussed in this
section.

While the VMR inversion attributes Var�cp�
entirely to random fluctuations in the number of
particles in V , the Shifrin inversion includes an
additional source of variance: fluctuations in the de-
gree of particle-particle shading in the beam (see
Appendix D). Consequently, Shifrin predicts a higher
Var�cp� for a given D̄ andE�cp�, or a lower D̄ for a given
Var�cp� and E�cp�. The difference between D̄cp and
D̄Shifrin is primarily a function of attenuance C, be-
cause at higherC, particle-particle shading is greater

and fluctuations in shading have a larger potential
effect on Var�cp�. If variable shading indeed contrib-
utes to measured Var�cp�, we expect D̄Shifrin to be
more robust than D̄cp to changes in C. Instead, we
found that C was significantly correlated with bias
in D̄Shifrin but not D̄cp (Fig. 8).

This result suggests that the effect on Var�cp� of
variations in shading within the sample beam was
significantly smaller than that predicted by Shifrin.
The irregular, elongated shapes [14] and possible
semi-transparency of the aggregates in this study
may account for some of the reduction in variability
versus Shifrin’s assumption of solid, circular particle
cross sections. Additionally, the fluctuations that
were produced by shading, especially of the smallest
particles, may have occurred at frequencies too high
for the ac-9 to resolve. Therefore, while the VMR in-
version appears to be a more consistent method for
estimating D̄ from cp fluctuations in this experiment,
the Shifrin inversion may perform better in condi-
tions of more solid particles, slower relative particle
speed, or shorter sample integration times. High
variance on time scales much shorter than tres is ex-
pected in such cases, however, and the VMR inver-
sion may still be used if this higher-frequency
variance is identified and filtered out.

D. Comparison with Spectral Slope

The spectral slopes of cp and bbp have been proposed
as in situ optical proxies for particle size [27,28].
Spectral slopes provide certain advantages over
the VMR method: no single Qc must be assumed, γ
can be calculated over shorter temporal and spatial
windows than the VMR, γ is not biased by noise or
other variance, and ocean color measurements may
allow estimation of γbbp from space [28,31]. On the
other hand, γ requires more complex, multiwave-
length sensors and conversion of γ to particle size
requires assumptions of Jungian PSD shape and
homogeneous spherical particles, often violated in
natural particle assemblages. During this study,
the VMR inversion performed qualitatively better
during the settling period and as a whole over the
entire experiment, whereas γcp (although not γbbp)
performed qualitatively better during the initial
0.75 h. Ultimately, our results show that each
method can be sensitive to factors other than mean
particle size, and more work needs to be done to
understand and quantify these other effects. Then,
the combination of both methods may provide en-
hanced information about different parts of the
PSD or perhaps about particle composition.

E. Considerations for Field Deployment

1. Choice of Q
The literature values of Qc and Qbb presented in this
study (Table 2) are intended as first guesses to apply
to particles of unknown composition sampled using
visible wavelengths. If local particle optical proper-
ties are better constrained, site-specific values of Q
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may increase VMR inversion accuracy. Alternatively,
if the ratio of cp or bbp to another physical particle
measurement (e.g., suspended particulate mass or
particulate organic carbon concentration) is approx-
imately constant, this ratio may be substituted for Q
in Eq. (2), yielding an estimate of weightedmean par-
ticle mass, for example, in place of Ā.

It is important to note that even if bulk Q is well
constrained, a strong size dependence of Q within a
single sample violates an assumption of the VMR
inversion. In this case, it is more accurate to use
Eq. (A11), yielding Ā�, the mean Ai weighted by op-
tical cross section and not physical cross section (see
Appendix A). Ā� still provides useful bulk particle
size information, but it is more difficult to validate
using PSD measurements and may not correlate
as strongly with particle clearance rate. In this study,
neither Qc nor Qbb varied strongly with size, so both
Ācp and Ābbp, estimates were accurate within 40% or
better. Some work to date has shown that Qc appears
well constrained in situ, in accordance with theory
[32], but Qbb is likely more variable, especially for
mixed populations of mineral and organic particles.
Ultimately, in situ field studies are needed to test the
accuracy of the VMR inversion in natural particle
populations.

2. Uncertainty in tres
In sampling regimes in which tres is smaller than the
interval between consecutive samples (as with the
LISST in Exp. 2), temporal autocorrelation will be
minimal, preventing the estimation of tres via auto-
correlation (Subsection 2.C.3). If possible, therefore,
sampling frequency should be increased or platform
speed decreased until a temporal autocorrelation is
observed. If this is not possible, but the velocity of
the sample relative to the sensor is known, tres
may be calculated based on this velocity and sensor
geometry. Otherwise, uncertainty in tres will propa-
gate to uncertainty in Ābbp or Ācp. However, as long
as tres is constant, VMR inversion relative size esti-
mates will still be useful.

3. Uncertainty Due to nVMR

In order to apply the VMR inversion to vertical pro-
file data containing strong gradients in cp and bbp,
profiling speed should be slow enough and sampling
frequency high enough that nVMR ≥ 30 within a layer
of interest to achieve a theoretical relative VMR pre-
cision of ≤25% via Eq. (7). Alternatively, the results of
multiple profiles through the same water mass may
be combined to increase precision.

4. Unconstrained Variance and the Limits of
Detectable Size
The dimensions of V set a hard upper limit on the
size of particles detectable by the VMR inversion.
Particles whose diameters approach (or exceed) the
smallest dimension of V will often (or always) occur

only partially within V , “appearing” as smaller par-
ticles to the VMR inversion. In practice, however, the
largest size of particle included in the VMR inversion
may be set by the likelihood of encountering a
particle of a given size in V during the course of a
single VMR calculation. In this case, large particles
too rare to be sampled reliably should be explicitly
excluded using an outlier filter, as explained in
Subsection 2.C.4.

The lower limit of the size of particles that contrib-
ute to scattering (and therefore to VMR inversion es-
timates of D̄) is set by the relationship between Di
andQc (orQbb�. In general,Q decreases with decreas-
ing Di for Di < λ (i.e., Di < 0.5 μm for visible wave-
lengths), although the precise lower size limit will
also depend on particle shape and index of refraction
[33]. In addition, for any given mean signal, there
will be a lower limit of detectable D̄, set by the
variance due to sources other than particle size
(e.g., patchy distribution of particles, schlieren [30],
or instrument noise). Such “extra” variance, along
with uncertainty in Qbb, has the potential to cause
significant bias in field application of the VMR inver-
sion. During the first 0.75 h of this experiment, un-
constrained noise set the lower limit of detectable D̄
at ∼10 μm. Further studies will be necessary to bet-
ter understand and constrain potential sources of
variance and determine this lower limit in field
applications. If variance from a particular source is
independent of size and well characterized, it can
be subtracted from Var�cp� or Var�bbp� before
calculating the VMR inversion, lowering the limit
of detectable D̄.

5. Optimal Sample Volume
In general, larger sample volumes will be more effec-
tive at capturing larger particles and smaller sample
volumes will be better at distinguishing smaller
sizes. An ideal V would therefore be just large
enough to reliably capture the largest particles of in-
terest, both physically and statistically (see previous
section). In some cases, a pair of sensors with differ-
ent sample volumes may yield extra information
about the PSD, as the smaller volume will exclude
the larger particles and be more sensitive to smaller
particles. However, other factors, such as sensor sen-
sitivity and signal-to-noise ratio, sample duration,
internal averaging and platform speed may be just
as important as V for determining sensitivity to
small particles and should all be taken into account
when choosing an appropriate sampling strategy for
use with the VMR inversion.

5. Conclusions

We find that the VMR inversion consistently pro-
duced accurate estimates of D̄ in the range of
10–80 μm during two laboratory clay aggregation ex-
periments. At higher sizes (up to 200 μm), the VMR
inversion yielded plausible results that retained the
expected correlation with clearance rates, but
these higher estimates could not be quantitatively
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validated because the larger aggregates likely ex-
ceeded the size range of the LISST inversion. For
D̄ < 10 μm, VMR estimates were biased high, likely
due to an additional unconstrained source of
variance at the start of the experiment.

Testing the VMR inversion in situ will be impor-
tant to determine the effect of the added complexity
of marine environments on inversion accuracy.
However, in light of the large range of particle sizes
that contribute to optical backscattering and beam
attenuation in the ocean, from submicrometer bacte-
ria to aggregates of several millimeters or greater, we
believe that the VMR inversion is likely to provide
useful mean particle size information in a variety
of marine environments, even where sources of bias
exist. If so, this inversion, combined with the wide-
spread current and future deployment of small opti-
cal sensors, promises to greatly expand the spatial
and temporal coverage of marine particle size
estimates at little extra cost, leading to increased
understanding of particle size in the ocean and the
impact of size on the many processes that particles
mediate.
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Appendix A: Derivation for an Ideal Sensor

The VMR inversion can be applied to any additive
optical property. Here, as in Section 2, cp is used
as an example. The VMR inversion rests on the
assumption that particles are randomly distributed
in space. For the derivation in this section, let us also
assume an ideal sensor, which can measure instanta-
neously the particulate attenuation cp�t� at time t
within the sample volume V. Let cp;i�t� be the portion
of cp�t� due to a single class i of identical particles.
Equation (A1) defines cp;i�t� [22] as a function of V,
the number of particles Ni�t� of class i within V ,
and the attenuation cross-section σc;i of a single
particle:

cp;i�t� � Ni�t�
σc;i
V

: (A1)

In the case of multiple particle classes, cp�t� is
simply the sum of cp;i�t� from all particle classes:

cp�t� �
X
i

cp;i�t� �
1
V

X
i

Ni�t�σc;i: (A2)

Similarly, the expected value (mean) of cp�t�,
E�cp�t��, can be expressed in terms of E�Ni�t��:

E�cp�t�� � E
�
1
V

X
i

Ni�t�σc;i
�
� 1

V

X
i

E�Ni�t��σc;i: (A3)

The equality Var�aX � � a2 Var�X � (where a is con-
stant), and the equality Var�X � Y � � Var�X � �
Var�Y � (where X and Y are independent, random var-
iables) allow us to similarly express the variance
Var�cp�t�� in terms of Var�Ni�t��:

Var�cp�t�� � Var
�
1
V

X
i

Ni�t�σc;i
�

�
�
1
V

�
2X

i

Var�Ni�t��σ2c;i: (A4)

The assumption that particles are randomly
distributed in space allows us to approximate Ni�t�
as a Poisson random variable, in which case

Var�Ni�t�� � E�Ni�t��: (A5)

After substituting Eq. (A5) into Eq. (A4), the VMR
becomes

Var�cp�t��
E�cp�t��

� σ̄c
V
; (A6)

where σ̄c is the mean σc;i, weighted by the total at-
tenuation cross-section

P
iE�Ni�t��σc;i of each class:

σ̄c �
P

i E�Ni�t��σ2c;iP
i E�Ni�t��σc;i

: (A7)

Particle cross-sectional area Ap;i can be related to
σc;i through the attenuation efficiency factor Qc;i, de-
fined as the fraction of light incident on a particle
that is attenuated:

Qc;i �
σc;i
Ap;i

: (A8)

In the event that Qc;i is constant across all particle
classes in suspension, we can rewrite Eq. (A7) as

σ̄c �
Q2

c

Qc

P
i E�Ni�t��A2

iP
i E�Ni�t��Ai

� QcĀ; (A9)

where Ā is the mean cross-sectional area, weighted
by the total cross-sectional area of each size class
[Eq. (1) in text]. We obtain Ācp, the VMR inversion
estimate of Ā by substituting Eq. (A9) into Eq. (A6)
and solving for Ā:
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Ācp � Var�cp;i�t��
E�cp;i�t��

V
Qc

: (A10)

Equation (2) in the text is derived from Eq. (A10),
combined with the correction of V for water move-
ment derived in Appendix C. In the event that Qc;i
varies strongly with particle class we may replace
Eq. (A10) with

Ā�
cp � Var�cp;i�t��

E�cp;i�t��
V
Q�

c
; (A11)

where Ā�
cp is the mean Ai, weighted by σc;i and Q�

c is a
weighted average of Qc;i that depends on a nonlinear
interaction between the PSD and Qc;i but must
fall between the minimum and maximum Qc;i in
suspension.

Appendix B: Correction of V for Inhomogeneities in
Sensing Efficiency

In practice, the contribution of a particle within V to
a measurement of cp�t� may depend not only on σc;i
and V, but also on the position �x; y; z� within V . This
may result from inhomogeneous illumination of V,
e.g., by a noncollimated or Gaussian beam source,
or by variation in the efficiency of the detection of
light scattered from differing positions, e.g., as a
function of distance from the detector. Such devia-
tions, combined with the random distribution of par-
ticles, will add random variability to measurements
of cp�t�, introducing a positive bias in Ācp. This bias
can be corrected by modifying V as follows.

Let VG be the full geometric sample volume of a
sensor, and let a homogeneous scattering medium fill
VG (see Table 4 for a list of additional terms intro-
duced in the Appendices). Let ε�x; y; z� be the signal
per unit volume coming from point x, y, z, normalized
to the total signal. It follows that the spatial integral
of ε�x; y; z� within the limits of VG is equal to one:

ZZZ
VG

ε�x; y; z�dxdydz � 1: (B1)

As a particle moves around the sample volume of a
nonhomogeneous sensor, its σc;i will appear to
change. If we ignore any variations in ε�x; y; z� over
the spatial extent of a single particle, then we can
define σ0c;i�x; y; z�, the “apparent” σc;i at point x, y, z,
as follows:

σ0c;i�x; y; z� � σc;iε�x; y; z�VG: (B2)

We can now treat each particle position as a sep-
arate particle class and replace σc in Eq. (A6) with
σ0c�x; y; z�, yielding

Var�cp�t��
E�cp�t��

� σ0c�x; y; z�
VG

; (B3)

where σ0c�x; y; z� is defined as

σ0c�x; y; z� �
P

i E�Ni�t��
RRR

VG
σ02c;i�x; y; z�dxdydzP

i E�Ni�t��
RRR

VG
σ0c;i�x; y; z�dxdydz

: (B4)

Substituting Eqs. (B2), (B1), and (A7) into Eq. (B4)
we obtain

σ0c�x; y; z� �
P

i E�Ni�t��
RRR

VG
σ2c;iε

2�x; y; z�V2
GdxdydzP

i E�Ni�t��
RRR

VG
σc;iε�x; y; z�VGdxdydz

� VG

P
i E�Ni�t��σ2c;i

RRR
VG

ε2�x; y; z�dxdydzP
i E�Ni�t��σc;i

RRR
VG

ε�x; y; z�dxdydz

� VG

P
i E�Ni�t��σ2c;i

RRR
VG

ε2�x; y; z�dxdydzP
i E�Ni�t��σc;i

� σ̄VG

ZZZ
VG

ε2�x; y; z�dxdydz: (B5)

Table 4. Table of Additional Terms in Appendix

Term Units Description

Ā�
cp m2 Mean Ai, weighted by σc;i

Lsamp m Distance sensor moves relative to water during tsamp
Lt m Length of VGt in direction of movement
LV m Length of VG in direction of movement
Q�

c m2 Cross-sectional area of VG in plane perpendicular to direction of motion
t�x� s Time that point x in the direction of motion spends in VG

t�x� s Time that point x in the direction of motion spends in VG

VG m3 Geometric sample volume of a sensor
VGt m3 Total geometric volume covered during one sample (tsamp) of a sensor moving relative to water
Vt m3 Sample volume weighted over tsamp
x m Position in the direction of movement of sensor relative to water
ε�x; y; z� m−3 For a homogeneous scattering medium, signal per unit volume at point x; y; z, normalized to total signal
σ; σc; σbb m2 Optical cross section: Equivalent cross-sectional area of a particle that attenuates (σc)

or backscatters (σbb) 100% of incident light
σ0c�x; y; z� m2 Apparent σc at point x, y, z for sensor with spatially nonhomogeneous sensing efficiency
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Substituting Eq. (B5) into Eq. (B3), we obtain

Var�cp�t��
E�cp�t��

� σ̄c

ZZZ
VG

ε2�x; y; z�dxdydz: (B6)

Therefore, in the case of a nonhomogeneous sam-
ple volume we can simply define V as a “weighted
sample volume”, given by

V �
�ZZZ

VG

ε2�x; y; z�dxdydz
�
−1
; (B7)

and continue to use Eq. (A6) and all of its derivatives,
including the VMR inversion [Eq. (A10)].

For the ac-9 we assume homogeneous sensing effi-
ciency and use V � VG � 5 ml (beam diameter:
0.8 cm; path length: 10 cm). We calculate LISST V
of 1.9 ml via Eq. (B7) using manufacturer specifica-
tions: a Gaussian beam with a waist radius w of
3.5 mm, cut off at a radius of 5 mm, and a path length
L of 5 cm. Assuming minimal change in beam width
along the path length, we calculate εLISST as a func-
tion of radius r from the beam center:

εLISST�r� �
exp

�
−

2r2

w2

�
RRR

VG
exp

�
−

2r2

w2

�
dxdydz

; (B8)

and substitute into Eq. (B7).
For the ECO BB sensors, we obtained an estimate

of V�0.62 ml� using Eq. (B7), with εECOBB defined as

εECOBB�x; y; z� �
Pd�x; y; z�

ΔV
P

x

P
y

P
z Pd�x; y; z�

; (B9)

where Pd�x; y; z� is the power received by the detector
of a scattering meter from elemental volume ΔV,
centered at point �x; y; z�.

We calculated Pd�x; y; z� following Sullivan et al.
[15], using the Sullivan and Twardowski [34] phase
function and the following sensor geometry: angles
between center of source or detector cone and sensor
face: 49° and 73°; source and detector cone half an-
gles: 17.5° and 42.5°; distance between source and
detector: 1.7 cm (Mike Twardowski, pers. comm.).
The Pd�x; y; z� calculation wasmodified from Sullivan
et al. [15] to correct an error in the original equation,
replacing the solid angle of ΔV viewed from the de-
tector with the solid angle of the detector viewed
from ΔV . We also replaced the beam attenuation
term with the absorption coefficient of water
(0.41 m−1 at 660 nm), because sensitivity analysis
showed that attenuation by particles along the path
of light in the ECO BB sensors will simultaneously
decrease both V and apparent σbb, with minimal
net effect on the VMR inversion.

Appendix C: Correction for Water Movement

Each measurement taken by an optical sensor must
be integrated over a finite duration tsamp. Movement
of the water relative to the sensor causes VGt, the to-
tal geometric volume of water sampled during tsamp,
to increase beyond VG. We may derive Vt, the
weighted volume sampled over tsamp, from VGt using
Eq. (B7). In this section we find the ratio of VG to Vt
in terms of tsamp and the residence time tres of a par-
ticle inVG for the simplified case in which the sample
moves at a constant velocity in direction x relative to
VG and the cross section Ayz of VG in the y–z plane is
constant along the x-dimension. Let us also assume
that the sensor response within VG is homogeneous
(VG � V) so that the relative contribution of a point
along x to the total signal is determined only by the
length of time t�x� that point x spends in VG during
tsamp. In this case we can rewrite Eq. (B7) as

Vt �
�
Ayz

Z
Lt

0
ε2�x�dx

�
−1
; (C1)

where Lt is the length of VGt in the x-direction. We
can express ε�x� in terms of t�x� as follows:

ε�x� � 1
Ayz

t�x�R Lt
0 t�x�dx

; (C2)

and we can divide Lt into the length LV of VG in the
x-direction and the length Lsamp that the sensor
moves relative to the sample during tsamp. Let us
now define a correction factor α in terms of LV,
Lsamp, and t�x� as follows:

α � V
Vt

� AyzLV�
Ayz

R Lt
0 ε2�x�dx

�
−1 � LV

R LV�Lsamp
0 t2�x�dx�R LV�Lsamp

0 t�x�dx
�
2 :

(C3)

There are two solutions for Eq. (C3), corresponding
to tsamp ≥ tres and tsamp ≤ tres. At tsamp � tres the two
solutions converge.

For tsamp ≥ tres, we can divide t�x� into three
sections, defined in relation to LV and Lsamp:

t�0 ≤ x ≤ LV� �
tresx
LV

t�LV ≤ x ≤ Lsamp� � tres

t�Lsamp ≤ x ≤ Lsamp �LV� �
tres�Lsamp �LV � x�

LV
: (C4)

The first section represents the water that is
within VG at the start of a sample. The second section
represents water that is at or beyond the leading
edge of VG at the start of the sample and passes
through the entire length LV of VG during tsamp.
The third section represents water that is within
VG at the end of a sample. We can obtain the
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following solutions for the two integrals in Eq. (C3)
for tsamp ≥ tres after substituting Eq. (C4):

Z
LV�Lsamp

0
t�x�dx � tresLV

2
� tres�Lsamp − LV � �

tresLV

2

� tres�LV � Lsamp − LV �
� tresLsamp (C5)

and

Z
LV�Lsamp

0
t2�x�dx � t2resLV

3
� t2res�Lsamp − LV � �

t2resLV

3

� t2res

�
2LV

3
� Lsamp − LV

�

� t2res

�
Lsamp −

LV

3

�
: (C6)

Substituting Eq. (C5) and Eq. (C6) into Eq. (C3) we
obtain the solution

α �
LVt2res

�
Lsamp −

LV
3

�
t2resL2

samp
�

LV

�
Lsamp −

LV
3

�
L2
samp

� LV

Lsamp
−

1
3

�
LV

Lsamp

�
2
: (C7)

We can find α in a similar fashion for tsamp ≤ tres as
well. In this case, t�x� becomes

t�0 ≤ x ≤ Lsamp� �
tsampx

LS
;

t�Lsamp ≤ x ≤ LV� � tsamp;

t�LV ≤ x ≤ Lsamp �LV� �
tsamp�Lsamp �LV � x�

Lsamp
: (C8)

Equation (C8) is identical to Eq. (C3), except that
all instances of Lsamp and LV have been reversed, and
tsamp replaces tres. Substitution into Eq. (C3) and
integration in this case yields

α � 1 −

1
3

Lsamp

LV
: (C9)

Let us now define τ as the ratio of LV to Lsamp and
note that τ must also equal the ratio of tres to tsamp
[Eq. (4) in text]:

τ � LV

Lsamp
� tres

tsamp
: (C10)

We can now combine Eqs. (C7) and (C9) and
express them in terms of τ:

α�τ� �
�
1 − �3τ�−1; if τ ≥ 1
τ − τ2

3 ; ifτ ≤ 1
: (C11)

Note that α�τ� is continuous for τ � 1.
In order to obtain the full VMR inversion equation,

corrected for water movement, we must replace V
with Vt in Eq. (A10). The expression V∕α�τ�may then
be substituted for Vt [Eq. (C3)] to obtain Eq. (2) from
the text.

Appendix D: Effect of Particle-Particle Shading

Implicit in Eq. (A1) and all derivations that follow is
the assumption that the contribution of each particle
to cp is not changed by the presence of other particles.
This is a fundamental assumption of any measure-
ment of an inherent optical property such as cp or
bbp. However, violation of this assumption will affect
the VMR inversion differently than it affects E�cp� or
E�bbp�, so a brief discussion is warranted.

In a beam transmissometer, the light attenuated by
a particle is detected by the reduction in source light
that reaches the sensor. If this particle is in the
shadow of another particle, this reduction in detected
light is decreased. If particles are randomly distrib-
uted in space, the calculation of cp takes into account
the mean effect of shading on the detected signal.
However, random variations around this mean—
not accounted for by the VMR inversion—will cause
a positive bias when present by adding to the vari-
ance. The magnitude of variations in cp caused by
random particle-particle shading will depend on the
concentration, size, shape, and transparency of par-
ticles in suspension. The time scale of these variations
will depend on the particles’ size and relative speed.
Shifrin’s (1988) particle size inversion relies on the
same fundamental assumptions as the VMR inver-
sion, but additionally incorporates the effect of varia-
tion in particle-particle shading for completely
opaque spherical particles (i.e., the maximum pos-
sible effect). Therefore, if all other assumptions of
both size inversions are met, but if particles are not
completely opaque and spherical or if some of the fluc-
tuations caused by particle-particle shading occur too
rapidly to be detected by the transmissometer, then
the true mean particle size will fall somewhere in be-
tween the estimates of the Shifrin inversion and the
VMR inversion. The effect of particle-particle shading
on the validation dataset presented in this paper is
discussed in Subsection 4.C.

A scattering meter detects light that travels from
the light source to a particle, where it is scattered
and then to the sensor. Absorption by other particles
along this path will decrease the scattered light that
is detected. At very high particle concentrations, or
for scattering meters with long path lengths, an ab-
sorption correction factor may be necessary to correct
the mean scattering measurement. If uncorrected
scattering measurements are used, absorption will
induce a low bias in the VMR inversion. If an absorp-
tion correction is applied to scattering measure-
ments before the VMR inversion, accounting for
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mean shading, there may be a small high bias in the
VMR inversion due to variability in this shading.
While absorption was not measured during this
study, any particle-particle shading effect was likely
minimal due to the short path length of the backscat-
tering instruments.
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